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Abstract 

 
This study compares four methods, Mean Imputation (MI), Median Imputation (MDI), Linear Interpolation 

(LI), and Kalman Filter Algorithm (KAL), for estimating missing values in time series data using Hidden 

Markov Models (HMM). The evaluation is based on accuracy measures: Root Mean Square Error (RMSE), 

Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). The findings reveal that KAL 

outperforms other methods across all sample sizes under linear trend structures. On the other hand, MDI 

performs best under quadratic and exponential trend structures. HMMs were applied to the estimated series 

with MDI and KAL and compared with actual series models. The Akaike Information Criterion (AIC) values 

Original Research Article 

https://doi.org/10.9734/ajpas/2025/v27i1702
https://www.sdiarticle5.com/review-history/128625


 
 

 

 
Dairo et al.; Asian J. Prob. Stat., vol. 27, no. 1, pp. 43-55, 2025; Article no.AJPAS.128625 

 

 

 
44 

 

of the models for series with 12% missingness show minimal divergence from those of the actual series. This 

study underscores the importance of selecting suitable estimation methods tailored to specific trend structures 

in time series analysis.  

 
 

Keywords: State space; stochastic process; missing values; estimation; variable. 
 

1 Introduction 
 

1.1 Background to the study 
 

A Hidden Markov Model (HMM) is a specific type of Markov chain in which the state is only partially 

observable. Before exploring HMMs, it's essential to understand one of their fundamental components: the 

Markov chain. 
 

A Markov chain is a stochastic model that describes a sequence of potential events, where the probability of 

each event is determined solely by the state of the previous event. This concept falls under the broader category 

of Markov processes, named after the Russian mathematician A. Markov, who introduced it in the 19th century. 

A Markov process is defined by the Markov Property, which asserts that only the present state is necessary to 

forecast future events, as all pertinent past information is contained within it (Ferreiro, 1987). 

 

A Markov chain has the Markov property; let 𝑋𝑛, 𝑛 ∈ 𝑍 ≥ 0  be a stochastic process, taking 

values  𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑛 . If 𝑋𝑛 = 𝑖𝑘 , then we say that the process is in state 𝑖𝑘 . In general, 𝑃𝑖𝑗  will mean the 

probability of transition from the current state 𝑖 to the next state𝑗. 

 

In other words, the state at a particular point in time encapsulates all we need to know about the process's 

history to predict its future (Brockwell & Davis, 1991). 
 

In essence, the state of a process at a specific moment in time encompasses all the information necessary to 

understand its past and predict its future (Fung, 2006). However, there are instances where a Markov process 

inadequately represents the patterns we seek to identify due to our inability to observe the true states of the 

system fully. To address this limitation, we can acknowledge the presence of hidden information, which is the 

premise of the hidden Markov Model (HMM) (Wincek & Gregory, 1986). 
 

A Hidden Markov Model is a doubly stochastic process featuring an underlying stochastic process that remains 

hidden (i.e., unobservable). It can only be inferred through another set of stochastic processes that yield the 

sequence of observed symbols. A fundamental description of a hidden Markov model can be articulated as 

follows:  
 

𝑁            =      number of states 

𝑇           =      number of observations emission parameter 

𝜃𝑖 = 1 … … … … . 𝑁    = for an observation associated with state 𝑖 
𝜑𝑖 = 1 … … … . 𝑁, 𝑗 = 1 … … … . 𝑁      = probability of transition from state  𝑖 to state 𝑗 N-dimensional vector, 

composed of 𝜑𝑖, 𝑗 = 1 … . . 𝑁; 
 

 𝜑𝑖 = 1 … … 𝑁 = the 𝑖-th row of the matrix 𝜑𝑖 = 1 … … . 𝑁, 𝑗 = 1 … … . 𝑁 (sum of it is 1) 

𝑥𝑡 = 1 … … 𝑇 = (hidden) state at time t  

𝑦𝑡 = 1 … … 𝑇 = observation at time t probability distribution 

𝐹(𝑦 𝜃⁄ ) = of an observation parameterized on  𝜃 
 

HMMs did not gain much popularity until the early 1970s when Baum et al. successfully applied the technique 

to speech recognition by developing an efficient training algorithm for HMMs (Quant Education, 2014). Still, 

since then, it has been applied differently by different writers and authors, e.g., A Hidden Markov Model 

inference approach to testing the Random Walk Hypothesis: Empirical evidence from the Nigerian Stock 

Market (Nkemnole. E., 2016). A hidden semi markov model with missing data and multiple observation 

sequences for mobility tracking (Shun-Zheng, Hisashi Kobayashi 2001), Parametric Hidden Markov Model for 

gesture recognition (Wilson et al., 1999), Segmentation of brain MR images through a hidden Markov random 
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field mode land the expectation-maximization algorithm (Zhang et al., 2001), Folk music classification using 

Hidden Markov Models (Chai and Vercoe, 2001),  Recognizing of humans from their gaits (Narayanan, 2003) 

and a host of many others. 
 

The hidden Markov model (HMM) technique has become one of the most successful techniques in estimation 

and recognition (e.g. speech recognition), decoding in digital communication, and time series analysis. Hidden 

Markov Models are equivalently defined through a functional representation known as the state space model. 

The state-space model of an HMM certainly is one of the concepts of statistical model processing that has had a 

profound practical impact in recent years. 
 

The state space model (Doucet and Johansen, 2009) of an HMM is represented by the following two equations: 
 

(State equation)              𝑥𝑡 = 𝑓(𝑥𝑡−1) + 𝑤𝑡                                                                                          (1) 
 

(Observation equation)         𝑦𝑡 = 𝑔(𝑥𝑡) + 𝑣𝑡                                                                                        (2) 
 

where 𝑓 and 𝑔 are either linear or nonlinear functions, wt and vt are white noise processes. Models represented 

by (1) and (2) are referred to as state space models, and this includes a class of HMMs with non-linear Gaussian 

state space models, such as the stochastic volatility model and the bearings-only tracking model. 
 

This research will investigate the hidden Markov model to determine the most appropriate technique for 

modeling time series data with missing values. These models can then be used to estimate the missing values. 

When one or more observations are missing it may be necessary to estimate the model and obtain estimates of 

the missing values. By including estimates of missing values, a better understanding of the nature of the data is 

possible with more accurate forecasting. One of the key steps in time series analysis is to identify and correct 

obvious errors and fill in any missing observations, which will enable comprehensive analysis. In particular, 

different patterns and frequencies of missing values will be considered using many simulated data sets. 
 

The problem of this research work states that in our society, we often have to analyze and make inferences 

using real data available for collection. Ideally, the data are carefully collected and have regular patterns with no 

outliers or missing values. In reality, this does not always happen, so an essential part of the initial examination 

of the data is to assess the quality of the data and to consider modifications where necessary. The treatment of 

missing data has been an issue in statistics for some time, but it has come to the forefront in recent years. This 

occurs because an observation may not be made at a particular time owing to faulty equipment, lost records, a 

natural disaster, or a mistake that cannot be rectified until later. A common problem frequently encountered is 

missing observations for time series data since the data are records taken through time. When one or more 

observations are missing, it may be necessary to estimate the model. There are various methods available for 

estimating missing values for time series data. However, a comparison of different methods for different types 

of data sets and positions for the missing data is lacking. This research has provided a comparison by using a 

variety of simulated data sets with missing values in different locations. 
 

This research, therefore, aimed to model methods of missing data using the Hidden Markov Model (HMM). 

The specific objectives are to: 
 

i. compare various methods of estimating missing data using sample sizes of 50, 200, and 1000.  

ii. compute Root Mean Squared Error, Mean Absolute Error, and Mean Absolute Percentage Error for the 

different methods to determine the best method of estimating missing values. 

iii. compute and compare the goodness of fit of estimated HMMs for the actual series and missingness series 

predicted.  

iv. compute the estimates and draw a conclusion. 
 

1.2 Research questions 
 

The following are relevant research questions answered in this work: 
 

i. In what way(s) will the comparison analysis/approach be executed? 

ii. What way(s) do we use to compute the RMSE, MAE, and MAPE for the different methods?  

iii. How will the HMMs estimates be computed and compared for both series predicted? 

iv. How will the estimates be analyzed and appropriate conclusions be reached? 
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2 Materials and Methods 
 

This research focuses on the data source and the research methodology employed. The statistical model utilized 

includes the Hidden Markov Model (HMM) along with various methods for estimating missing values, such as 

Mean Imputation (MI), Median Imputation (MDI), linear interpolation (LI), and the Kalman Filter Algorithm 

(KAL). 
 

In statistics, missing data, or missing values, refer to instances where no data value is available for a particular 

variable in an observation. The occurrence of missing data is quite common and can significantly impact the 

conclusions drawn from the dataset. 
 

2.1 Types of missing data 
 

The types of missing data are as follows: 
 

i. Missing Completely at Random (MCAR); 

ii. Missing not at Random (MNAR); 

iii. Missing at Random (MAR); 
 

2.1.1 Missing completely at random (MCAR) 
 

When data is classified as missing completely at random (MCAR), it indicates that any values of other variables 

do not influence the absence of data. In this situation, the probability of missing data remains constant across 

observations; any individual data point is equally likely to be missing. The mechanism behind the missing data 

is not related to the underlying model, allowing us to disregard the missing values in our analysis. 
 

The MCAR pattern arises when the missing values for a variable (x) are not dependent on any values from other 

measured variables, including variable (x). Consequently, the observed values represent a random subset of a 

complete dataset. 
 

2.1.2 Missing not at random (MNAR) 
 

Data are categorised as missing not at random (MNAR) when they do not follow the patterns of missingness 

considered random, such as missing completely at random (MCAR). In the case of MNAR data, underlying 

models likely explain the reasons for the missingness. If we understand these models, we can derive appropriate 

estimators for the model parameters that govern our data. The mechanism responsible for the missing data in 

this context is non-ignorable. Specifically, an MNAR pattern occurs when the missing values for a variable (x) 

are related to the values of that same variable (x). 
 

2.1.3 Missing at random (MAR) 
 

Data are considered Missing At Random (MAR) when the likelihood of missing data on a variable (Y) does not 

depend on its value, provided that other variables in the design are accounted for. If the data meet at least the 

MAR criterion, the mechanism behind the missingness can be deemed ignorable. Specifically, the MAR pattern 

arises when the missing values of a variable (x) are associated with other measured variables. Still, the absence 

of data does not result from the variable (x) itself. Furthermore, the variables with missing values can be 

estimated using other available measures, such as a regression equation. Missing data can be treated as 

ignorable if the MCAR or MAR assumption holds. 
 

2.2 Source of data 
 

The nature of this study demanded the use of simulated data, which are derived from the Additive Model 𝑋𝑡 =
𝑀𝑡 + 𝑆𝑡 + 𝑒𝑡. 
 

2.3 Simulation set-up and technical steps for the selected statistical tests in R 

environment 
 

The datasets were generated using the R statistical software package. Data are simulated from the Additive 

Model: 𝑋𝑡 = 𝑀𝑡 + 𝑆𝑡 + 𝑒𝑡. 
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The trend-cycle component 𝑀𝑡 used are; 
 

i. Linear: 𝑀𝑡 = 𝑎 + 𝑏𝑡 with  𝑎 = 1 and 𝑏 = 2 

ii. Quadratic: 𝑀𝑡 = 𝑎 + 𝑏𝑡 + 𝑐𝑡2 with 𝑎 = 1, 𝑏 = 2 and 𝑐 = 3 

iii. Exponential: 𝑀𝑡 = 𝑏𝑒𝑐𝑡 with 𝑏 = 10 and 𝑐 = 0.02 
 

It is assumed that 𝑒𝑡  𝑁(0,1) for the additive model. 𝑆𝑡 , 𝑤ℎ𝑒𝑟𝑒𝑡 = 1,2, … ,12 denote the seasonal indices, Table 

1 presents the seasonal indices used for simulation. 
 

Table 1. Seasonal Indices used for Simulation 

 

 𝑡 1 2 3 4 5 6 7 8 9 10 11 12 

 𝑺𝒕(𝑨𝒅𝒅) 1.1 1.2 1.1 1.0 1.0 1.0 0.9 0.9 0.9 0.9 1.1 1.1 
Note: 𝑆𝑡(𝐴𝑑𝑑) denotes Seasonal indices for the Additive model 

 

To begin with, we will load several packages from the R library, including car (for simulating missing data), 

TestDataImputation (for mean and median imputation), interp (for linear interpolation and the Kalman filter 

algorithm), as well as HiddenMarkov and DepmixS4 (for implementing the Hidden Markov Model). Next, we 

will define the previously mentioned parameters. Following that, we will adjust our sample sizes as outlined 

below:  
 

a) The small sample size consists of 12% missingness sets of 50; 

b) The moderate sample size; consists of 12% missingness sets of 200; 

c) The large sample size consists of 12% missingness sets of 1000. 
 

The sample sizes mentioned above are varied across additive models with linear, quadratic, and exponential 

trends. This results in nine (9) series, each simulated with 12% missingness. The missing values in these series 

are estimated using four different methods: Mean Imputation (MI), Median Imputation (MDI), Linear 

Interpolation (LI), and Kalman Filter (KAL). These estimations will be compared against nine actual series. The 

corresponding R codes for Mean Imputation (MI), Median Imputation (MDI), Linear Interpolation (LI), and 

Kalman Filter (KAL) are available. 
 

2.4 Methods of estimating missing values 
 

2.4.1 Mean imputation 
 

Mean imputation (MI) is a straightforward technique for handling missing data. It involves substituting the 

missing value with the mean of the observed values that precede the missing position(s). This is achieved by 

calculating the available values and dividing it by the number of observations before the missing data. This 

method preserves the sample size and is user-friendly (Eekhout et al., 2013). 
 

𝑀𝐼 = 𝑋(𝑖−1)𝑠+𝑗 =
1

(𝑖−1)𝑠+𝑗−1
[𝑋1 + 𝑋2 + 𝑋3 + ⋯ + 𝑋(𝑖−1)𝑠+𝑗−1]                                                (3) 

 

𝑀𝐼 =
1

𝑛
∑ 𝑋𝑡

𝑛

𝑡=1

                                                                                                                                            (4)  

where 𝑛 = (𝑖 − 1)𝑠 + 𝑗 − 1 is the number of observations preceding the missing observation(s). 
 

2.4.2 Median imputation 
 

Series median (MDI) estimates the missing value with the Median of the remaining series. Symbolically, the 

series median is given by: 
 

𝑀𝐷𝐼 =  𝑋(𝑖−1)𝑠+𝑗 =  
𝑋𝑁𝑡ℎ

2
                                                                                                                   (5) 
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Where N = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠 

2.4.3 Linear interpolation 

 

This method replaces missing values using a linear interpolation. It utilizes the last valid value before the 

missing value and the first value after the missing value for the interpolation. The linear interpolation (LI) for 

estimating missing values is given by: 

 

𝐿𝐼 = 𝑋(𝑖−1)𝑠+𝑗 =
1

2
(𝑋(𝑖−1)𝑠+𝑗−1 + 𝑋(𝑖−1)𝑠+𝑗+1)                                   (6) 

 

2.4.4 Kalman filter 

 

The Kalman filter (KAL) is a statistical algorithm that enables certain computations to be carried out for a 

model cast in a state space form. However, the smoothing algorithm is performed to obtain a more accurate 

estimate of missing values. Let 𝑌𝑡−1denote the set of past observations {𝑦1, … , 𝑦𝑡−1} and assume the conditional 

distribution of 𝜇𝑡  given  𝑌𝑡−1is 𝑁(𝜇𝑡 , 𝑝𝑡) where 𝜇𝑡  and 𝑝𝑡  are assumed to have been determined. Hence, the 

celebrated Kalman filter equations for updating the missing values from time t to t+1 are given by; 

 

𝜇𝑡 = 𝜇𝑡−1 + 𝑘𝑡−1𝑣𝑡−1,  𝑝𝑡 = 𝑝𝑡−1(1 − 𝑘𝑡−1) + 𝜎𝜂
2,  𝑘𝑡−1 = 𝑝𝑡−1 𝑓𝑡−1⁄ , 

 

𝑣𝑡−1 = 𝑦𝑡−1 − 𝜇𝑡−1, 𝑓𝑡−1 = 𝑝𝑡−1 + 𝜎𝜀
2                      (7) 

 

For t=1,2,…,n, where 𝑣𝑡−1 is the Kalman filter residual or prediction (signal) errors, 𝑓𝑡−1 is its variance and 

𝑘𝑡−1 is the Kalman gain. 

 

2.5 Comparison of methods of estimating missing values  
 

Numerous measures are available for accessing the four methods (MI, MDI, LI and KAL) performances. We 

evaluate the deviation of 𝑋(𝑖−1)𝑠+𝑗  from the actual , which can be calculated as  𝑒(𝑖−1)𝑠+𝑗 = 𝑋(𝑖−1)𝑠+𝑗 −

𝑋(𝑖−1)𝑠+𝑗, to access the performance of the aforementioned methods. We compare the “Accuracy Measures” of 

the four methods; the method with the minimum Accuracy Measures is the best at that level. These “Accuracy 

Measures” are root mean squared error (RMSE), mean absolute error (MAE) and Mean Absolute Percentage 

Error (MAPE), which are defined as follows. 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐴𝑡 − 𝐹𝑡)2𝑛

𝑡=1                       (8) 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |(𝐴𝑡 − 𝐹𝑡)|𝑛

𝑡=1                                       (9) 

 

𝑀𝐴𝑃𝐸 = [
1

𝑚0
∑ |

𝑒𝑘

𝑋𝑘
|

𝑚0
𝑘=1 ] × 100                                   (10) 

 

Where 𝐴𝑡 is the actual value in time t, and 𝐹𝑡 is the forecast value in time t. we considered one missing value at 

a time for different, 𝑚0 < 𝑛 position, 𝑛 > 1. 

 

After that, each of the best method series at different sample sizes and trend structures is modelled using HMM 

alongside the actual series. The goodness of fit of the models is then compared. 

 

2.5.1 Baum-welch algorithm 

 

The parameters of a Hidden Markov Model (HMM) are estimated using the Baum-Welch algorithm. This 

algorithm utilizes the well-established Expectation-Maximization (EM) technique to derive the maximum 

likelihood estimates of the parameters of a Markov model, based on a set of observed feature vectors. The EM 

algorithm comprises two steps: the E-step and the M-step. In the E-step, the conditional expectation is 

computed. 
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E-step: the expected likelihood, 𝑄(𝜃 ∨ 𝜃(𝐾)) 

𝑄(𝜃|𝜃(𝐾)) = 𝐸𝑔(𝑘) (log f(x| 𝜃i )|y,𝜃 ) 

 

is computed, where 𝜃(𝑘) is the current parameter estimate. 

M-step: In the M-step, a new parameter estimate 𝜃(𝑘+1) is obtained by maximizing𝑄). 

The E-step and M-step are repeated until some stooping criterion is met, such as  
|𝜃𝑛+1 − 𝜃𝑛| < 𝑄, for some specified 𝑄, obtaining suitable initial parameters inclusive. 

 

3 Results and Discussion 
 

3.1 Data presentation 
 

The data utilized in this study are simulated. The simulated data used were derived from the Additive Model: 

𝑋𝑡 = 𝑀𝑡 + 𝑆𝑡 + 𝑒𝑡 , 𝑤ℎ𝑒𝑟𝑒 𝑡 = 1,2,3, … ,9. Nine series were considered from the additive model; the series were 

partitioned into three groups according to their sample sizes, i.e., 50, 200, and 1000. Each group comprises three 

series that follow three different trend structures, namely linear, Quadratic, and Exponential (see the appendix 

for the simulated series plots).  

 

3.2 Comparative analyses of some statistical methods for estimating missing values 
 

As mentioned earlier, this study compares four statistical methods using their loss functions or accuracy 

measures (RMSE, MAE, and MAPE), with the one with the least being considered the best.  

 

3.2.1 Evaluation of the methods when sample size is small 

 

Table 2 summarises the accuracy measures for the four methods of estimating missing values when the sample 

size is small for the selected trend (Linear, Quadratic, and Exponential). The results in Table 2 indicate that 

KAL recorded two (2) lowest values of the accuracy measures (MAE and MAPE) out of the three measures 

considered for the linear trend.  Also, it indicates that MDI recorded two (2) lowest values of the accuracy 

measures (MAE and MAPE) out of the three accuracy measures considered for the quadratic and exponential 

trends. This implies that for a small sample size, KAL performed best for linear trend structures, and MDI 

performed best for quadratic and exponential trend structures. 

 

Table 2. Summary result of estimation of missing value 

 

Trend 

Component 

Accuracy 

Measures 

Estimation Method 

MI MDI LI KAL 

Linear RMSE 2.649548 2.650424 2.771986 2.672517 

MAE 1.0007 1.0007 0.9872792 0.959303 

MAPE 0.007527 0.007416 0.008269 0.006784 

Accuracy Score 1/3 0 0 2/3 

Quadratic RMSE 2319.233 2562.877 3787.697 2577.596 

MAE 452.1502 403.5013 890.2353 571.0032 

MAPE 0.000439 0.000252 0.001352 0.000686 

Accuracy Score 1/3 2/3 0 0 

  RMSE 127650.9 3.753932 1895660.8 141424.21 

Exponential MAE 31267.95 0.8245 268319.3 34198.6 

  MAPE 36.70758 0.000603 140.8656 45.02647 

Accuracy Score 0 3/3 0 0 
Source: Researchers’ compilations 

 

3.2.2 Evaluation of the methods when sample size is moderate 

 

Table 3 summarises the accuracy measures for the four methods of estimating missing values when the sample 

size is moderate for the selected trend (Linear, Quadratic, and Exponential). The results in Table 3 indicate that 

KAL recorded two (2) lowest values of the accuracy measures (RMSE and MAE) out of the three measures 
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considered for the linear trend.  The results also indicate a conflicting performance for MDI, LI, and KAL, as 

they recorded the lowest value in MAPE, MAE, and RMSE, respectively. This implies that MDI, LI, and KAL 

best estimate missing values when the sample size is moderate, and the trend follows a quadratic structure. In 

addition, MDI recorded the lowest values of the accuracy measures (RMSE, MAE, and MAPE) for the 

exponential trend. This implies that MDI outperformed others when the sample is small and the trend follows an 

exponential structure. 
 

Table 3. Summary result of estimation of missing value 
 

Trend 

Component 

Accuracy 

Measures 

Estimation Method 

MI MDI LI KAL 

Linear RMSE 1.553115 1.759002 2.240325 1.545315 

MAE 0.331571 0.3662652 0.4371246 0.328248 

MAPE 0.000793 0.000622 0.00079 0.000789 

Accuracy Score 0 1/3 0 2/3 

Quadratic RMSE 3778.192 4161.102 3982.469 3661.596 

MAE 1101.555 1160.667 987.9734 1050.958 

MAPE 0.00484 0.003565 0.003978 0.005102 

Accuracy Score 0 1/3 1/3 1/3 

  RMSE 2534654 2512328.8 2720963.5 2546924.3 

Exponential 

  

MAE 306517.6 275066.47 426979.97 314754.62 

MAPE 360.5943 0.001388 1097.168 281.9716 

Accuracy Score 0 3/3 0 0 
Source: Researchers’ compilations 

 

3.2.3 Evaluation of the methods when sample size is large 
 

Table 4 summarises the accuracy measures for the four methods of estimating missing values when the sample 

size is large for the selected trend (Linear, Quadratic, and Exponential). Similarly to the reports in Table 2, our 

results (Table 4) indicate that KAL recorded two (2) lowest values of the accuracy measures (RMSE and MAE) 

out of the three accuracy measures considered for the linear trend.  Also, it indicates that MDI recorded two (2) 

lowest values of the accuracy measures (MAE and MAPE) out of the three accuracy measures considered for 

the quadratic and exponential trends. This implies that for large sample sizes, KAL performed best for linear 

trend structures, and MDI performed best for quadratic and exponential trend structures. 
 

Table 4. Summary result of estimation of missing value 
 

Trend 

Component 

Accuracy 

Measures 

Estimation Method 

MI MDI LI KAL 

Linear RMSE 5717924 10.95917 2.983935 2.35911 

MAE 1667748 9.043338 0.8872693 0.7748485 

MAPE 4227.582 0.009937 0.017085 0.011757 

Accuracy Score 0 1/3 0 2/3 

Quadratic RMSE 3055.605 3136.429 3695.043 3099.308 

MAE 976.3247 973.6958 1088.255 984.0337 

MAPE 0.317189 0.26505 0.473352 0.331552 

 Accuracy Score 1/3 2/3 0 0 

  

Exponential 

  

RMSE 1524381 1524916.9 8762248.5 1570153.9 

MAE 200130.3 173719 2279966.1 234634.2 

MAPE 281.448 0.001336 102.4718 802.0694 

Accuracy Score 1/3 2/3 0 0 
Source: Researchers’ compilations 

 

3.2.4 Hidden Markov model (HMM) estimations 
 

HMMs (for actual data and estimated missing values series) were applied to the simulated data at each level of 

trend components for all the sample sizes considered: small (50), moderate (200), and large (1000). The best-

performing methods (MDI, LI, and KAL) at different comparison levels (see Table 2 to Table 4) were adopted 

to estimate the missing values at different levels based on their performances. 
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Table 5. Parameters Estimation Summary of HMMs 

 

Sample Size Trend  Model No. of 

States 

No. of 

iteration 

LogLikelihood ( ),  

AIC[ ] 

Initial Probabilit  Model Parameters  

𝜆 = (𝐴, 𝐵) 

  

Small 

 

 

Linear Actual  3 55 (-650.3) [4.567] (0.5, 0.5, 0) (0.075, 2.2E-04) 

KAL 3 92 (-685.6) [5.874] (0.5, 0.5, 0) (0.07, 0.08) 

Quadratic Actual 3 44 (-670.6) [4.70] (1, 0, 0) (0.62, 0.04) 

MDI 3 59 (-674.2) [4.75] (1, 0, 0) (0.68, 0.003) 

Exponential Actual 3 47 (-686.2) [4.57] (1, 0, 0) (0.29, 0.23) 

MDI 3 40 (-697.2) [4.66] (1, 0, 0) (0.08, 0.34) 

Moderate 

 

 

 

 

Linear Actual 3 82 (-793.0) [6.09] (0.5, 0.5, 0) (0.007, 3.4E-04) 

KAL 3 85 (-790.07) [6.13] (0.5, 0.5, 0) (0.12, 2.3E-04) 

Quadratic Actual 3 79 (-858.2) [6.70] (1, 0, 0) (0.24, 0.04) 

MDI 3 87 (-861.0) [6.71] (1, 0, 0) (0.48, 0.054) 

LI 3 96 (-863.9) [6.69] (1, 0, 0) (0.45, 0.035) 

KAL 3 102 (-866.8) [6.68] (1, 0, 0) (0.34, 0.04) 

Exponential Actual 3 76 (-872.5) [6.72] (1, 0, 0) (0.38, 0.021) 

MDI 3 84 (-885.7) [6.78] (1, 0, 0) (0.45, 0.025) 

 Linear Actual  3 222 (-1789.9) [6.75] (0.5, 0.5, 0) (0.05, 0.004) 

 KAL 3 234 (-1793.1) [6.86] (0.5, 0.5, 0) (0.07, 4.1E-4) 

 Quadratic Actual 3 245 (-1756.1) [6.78] (1, 0, 0) (0.12, 0.05) 

Large MDI 3 250 (-1876.1) [6.98] (1, 0, 0) (0.23, 0.006) 

  Exponential Actual 3 234 (-1955.1) [6.08] (1, 0, 0) (0.26, 0.036) 

  MDI 3 254 (-1986.7) [6.28] (1, 0, 0) (0.36, 0.045) 
Source: Researchers’ compilations
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Furthermore, HMMs were fitted for the series estimated by these methods (MDI, LI, and KAL) and for the 

actual series. The updated parameters estimations were obtained using the Baum-Welch algorithm; Table 5 

presents the model's estimations summary. Log-likelihood and AIC were also estimated to evaluate the model’s 

goodness-of-fit. From Table 5 above, the estimated AICs and parameter 𝜆 = (𝐴, 𝐵) of all HMMs fitted for the 

“missing values series estimated” show no or less divergence from the actual series models. Hence, MDI, LI, 

and KAL methods of estimating missing values are best employed in different scenarios, as highlighted in 

sections 3.2.1 to 3.2.3. 
 

4 Conclusions 
 

The study's aim and objectives have been principally accomplished. The analyses show the comparative results 

of the missing value estimations under three different trend structures for small, moderate, and large sample 

sizes. 
 

In the analyses, the methods of Mean Imputation (MI), Median Imputation (MDI), Linear Interpolation (LI), 

and Kalman filter algorithm (KAL) were tested under three different trend structures, namely Linear, Quadratic 

and Exponential for small, moderate and large sample sizes. The results for the four tests when the sample size 

is small (50) depict each method’s potency as follows: 66.7% and 33.3% potencies for Kalman filter algorithm 

(KAL) and Mean Imputation (MI) respectively under Linear trend structure; however LI and MDI recorded 

zero potencies; 66.7% and 33.3% potencies for Median Imputation (MDI) and Mean Imputation respectively 

under Quadratic trend structure however LI and KAL record zero potencies; and 100% for Median Imputation 

(MDI) under Exponential trend structure whereas others (MI, LI and KAL) recorded zero. 
 

In addition, the results for the four methods of missing values estimation when sample size is moderate (200) 

depict each method’s potency as follows: 66.7% and 33.3% for KAL and MDI respectively under Linear trend 

structure while MI and LI recorded zero; MDI, LI and KAL recorded potency of 33.3% each under Quadratic 

trend structure while MI recorded zero; and 100% for Median Imputation (MDI) under Exponential trend 

structure whereas others (MI, LI, and KAL) recorded zero. 
 

Lastly, the results for the four methods of estimating missing values when the sample size is large (1000) depict 

each method’s potency as follows: 66.7% and 33.3% for KAL and MDI respectively, under linear trend 

structure while MI and LI recorded zero, 66.7% and 33.7% for MDI and MI respectively under Quadratic and 

Exponential trend structures while LI and KAL recorded zero. 
 

The following recommendations are made to support further research in this field of stochastic statistics: 
 

i. Kalman filter algorithm should be employed to estimate missing values at any level of sample sizes 

under linear trend structures. 

ii. Median imputation should be employed at any level of sample sizes under quadratic and exponential 

trend structures. 
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Appendix 
 

Plots of simulated data 
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