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ABSTRACT 

As the prevalence of glaucoma continues to rise, clinicians and researchers are confronted with an age-old problem: 
how to reduce risk factors and preserve vision in glaucoma. Current management options revolve around a validated 
paradigm—intraocular pressure reduction. Active investigations to improve drug delivery efficacy and surgical out- 
comes are flourishing. This article aims to provide the interested readers with a review of recent discoveries in nano- 
biotechnology for the management of glaucoma. Targeted drug-delivery systems using mesoscale vectors demonstrate 
promising delivery profiles. The utility of nanoparticulate therapies to support retinal ganglion cell survival is being 
investigated. Studies to modulate tissue regeneration and remodeling and improve post-trabeculectomy outcomes are 
underway. Though these modalities promise new avenues to manage glaucoma, immediate market availability is not 
anticipated soon. 
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1. Introduction 

Glaucoma is a group of diseases having characteristic 
optic neuropathy with associated visual function deficits. 
Early disease detection and vision preservation constitute 
the management of glaucoma. Currently, therapeutic 
strategies involve medical and surgical reduction of in-
traocular pressure (IOP). However, maintaining local ther- 
apeutic bioavailability of hypotensive agents remains a 
challenge in the field of ophthalmic drug delivery. Sur- 
gical modalities are effective but have associated com- 
plications [1]. Given that 60 million people worldwide 
are afflicted by this disease [2] and 27% of those af- 
flicted are at risk of developing glaucoma-related blind- 
ness in one eye after 20 years [3], the demand for viable 
treatment alternatives, particularly improved drug deliv- 
ery models, is self-evident. 

2. Nanobiotechnologies for Glaucoma  
Management 

Previously, many clinical trials demonstrated that initial 
medical management is an effective option for IOP re-
duction and vision preservation [4-11]. Although topical 
instillation is the predominant route, ensuring effective 
local concentration is a fundamental challenge. Precor-
neal factors such as small load, poor tissue penetration, 
mechanical removal by tears and blinking, and nasolac-
rimal elimination prevent the medication from reaching a 
sustained therapeutic level and necessitate multiple dos-
ings per day, ultimately, leading to poor patient adher-
ence [12-14]. Other studies further report that many pa-
tients waste much of the topical medications because of 
incorrect instillation techniques [13-15]. Systemic ab-
sorption may precipitate adverse effects [16-21]. There-
fore, efforts are directed toward developing better drug 
delivery systems, e.g. ophthalmic inserts, smart hydrogel, 
vesicular and particulate carrier systems.  
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Nanoscale drug delivery systems offer the therapeutic 
advantages of targeted tissue penetration, enhanced re-
lease kinetics, and increased local biodistribution [22-24]. 
In the field of tissue engineering and regenerative medi-
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cine, the biologic length scale of nanostructures promotes 
meaningful interactions for tissue repair and regeneration 
[23]. “Nano” was originally defined for the semiconduc-
tor industry as having at least one dimension less than 
100 nanometer; but the definition of “nano-” has been 
recast in an operational fashion and many authors use 
“nano-” to include biologically relevant length scale, 
such as larger macromolecules and organelles for the 
fields of nanobiotechnology and nanomedicine [22-24]. 
Below, we summarize the recent discoveries in nanobio-
technology for the management of glaucoma.  

2.1. Drug Delivery Systems 

2.1.1. Vesicular Platforms—Liposomes, Discomes,  
and Niosomes 

Modeled after biologic organelles, liposomal systems are 
designed for encapsulation of therapeutic agents for drug 
delivery and have found to have increased efficacy and 
decreased toxicity. Their diverse systemic applications 
encompasses liposomal daunorubicin for Kaposi’s sar-
coma, micellar paclitaxel for ovarian and breast cancer, 
and liposomal amphotericin B for systemic fungal infec-
tions or leishmaniasis. Surface modifications, such as 
PEGylation of the liposome, extend systemic circulating 
time and reduce toxicity.  

Liposomal preparations of topical ophthalmic medica-
tions are particularly well studied for ocular surface in-
fections. Use of liposomal amphotericin B for the treat-
ment of fungal keratitis has been reported to significantly 
reduce toxicity compared to non-liposomal formulation 
[25,26]. Topical liposomal acyclovir shows better deliv-
ery than commercial acyclovir ointment in in vitro stud-
ies and animal models [27]. Liposomal formulations of 
gatifloxacin, ciprofloxacin and fluconazole have shown 
prolonged delivery profiles, leading to better in vitro 
transcorneal permeation compared to aqueous formula-
tions [28-30]. 

Other investigators are evaluating the feasibility of 
liposome-encapsulated ocular antihypertensive drugs. 
Topical liposomal and niosomal formulations of aceta-
zolamide, a carbonic anhydrase inhibitor, are being in-
vestigated for their ability to overcome acetazolamide’s 
limited aqueous solubility and improve its corneal per-
meation [31-34]. In vitro and in vivo studies demonstrate 
sustained release kinetics with good intraocular hypoten-
sive effect [32]. 

In addition to liposomes, other vesicular platforms, 
such as discomes and niosomes, are also being explored 
for ocular antihypertensive medications. Discomes are 
non-ionic surfactant-based discoidal vesicles, which also 
improve drug delivery. Some authors have reported that 
discoidal vesicles containing timolol maleate produce a 
sustained activity profile upon introduction to the ocular 

cavity [35]. Niosomes are another non-ionic bilayered 
vesicle that can entrap both hydrophilic and lipophilic 
drugs, either in the aqueous layer or in the vesicular 
membrane. Compared to liposomes, niosomes offer some 
advantages, such as chemical stability and lower produc- 
tion cost. A recent study reported that a mucoadhesive- 
coated niosomal system for timolol maleate can achieve 
higher peak concentrations for an extended period com- 
pared to the conventional dose form [36]. Sizes of these 
discomes and niosomes are in the micron range [35,36]. 
Lastly, a more recent nanovesicular formulation of bri- 
monidine tartrate has been constructed using sorbitan 
stearate and cholesterol, and the authors report signifi- 
cant intraocular pressure-lowering activity for a pro- 
longed period of time compared to the commercial pre- 
paration [37-39]. Most of the above studies report no 
short-term toxicity to the ocular surface of the animal 
models.  

2.1.2. Nanoparticulate Platforms 
Development of nanoparticulate platforms for drug de- 
livery has gained significant traction over recent years. 
The nanoscale size range and surface functionalization 
offer the advantages of targeted delivery and resistance 
to degradation. Particulate delivery systems also provide 
more stable storage media, compared to vesicular sys- 
tems. Biodegradable polymeric platforms present an ex- 
citing opportunity for investigators, where the pharma- 
cokinetics is determined by the particulate size and car- 
rier material, which is ultimately controlled by synthesis 
technologies.  

Biodegradable poly(lactic-co-glycolic) acid (PLGA) 
polymers have promise as potential couriers for anti- 
hypertensive agents. Timolol maleate integrated into 
PLGA polymers via a solvent evaporation method has 
been reported to have sustained release kinetics [40]. The 
release mechanism is proposed to be polymeric degrada- 
tion, rather than microporous diffusion. Another study 
suggests that PLGA and poly(l-lactide) acid (PLLA) mi- 
cro- and nanoparticles can deliver timolol maleate con- 
tinually over a 3-month period [41]. Intravitreal injection 
of PLGA is safe in a rabbit model, where only a localized 
foreign body reaction is reported [42]. In this study, the 
authors observed that the choroid and retina maintain 
normal appearence and no clinical inflammation was 
detected. Accordingly, some investigators are optimistic 
that these biodegradable polymeric micro- and nano- 
spheres may find application as subconjunctival depots to 
improve patient adherence [41]. Similarly, nanoparticu- 
late platforms for carbonic anhydrase inhibitors are being 
investigated as well. Methazolamide nanoparticles are 
reported to have longer and higher therapeutic efficacy 
compared to suspension formulation and commercial eye 
drops [43,44]. 
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Another polymer of ophthalmic interest is chitosan, a 
polycationic biodegradable polymer composed of re- 
peating glucosamine units. The chitosan nanoparticles 
are thought to have longer precorneal residence time and 
increased corneal penetration. Gatifloxacin-loaded chi- 
tosan nanoparticles show sustained released kinetics [45]. 
Chitosan/polylactic acid nanoparticles containing rapa- 
mycin demonstrate improved corneal allograft survival in 
a rabbit model compared to aqueous suspension [46]. 
With respect to ocular anti-hypertensive agents, nanopar- 
ticulate formulations of chitosan and timolol maleate or 
dorzolamide hydrochloride have also been described [47]. 
These investigators find that modification of these 
nanoparticles with hyaluronic acid, which improves mu- 
coadhesion, significantly decreases intraocular pressure 
in a rabbit model, compared to plain solutions of these 
drugs. 

2.1.3. Dendrimeric Platforms 
Dendrimers comprise a fascinating drug carrier system. 
These hyperbranched globular macromolecules with den- 
dritic subunits have modifiable properties depending on 
their subunits and surface terminal groups. Therapeutic 
agents can either be encapsulated in the core of the den- 
drimer scaffold or conjugated on the surface. The den- 
drimer diameter can be customized based on its genera-
tion and terminal groups. 

Some therapeutic agents being investigated include 
propranolol, sulfasalazine, folic acid, adriamycin, meth- 
otrexate, paclitaxel, and penicillin. Photodynamic ther- 
apy and gene therapy using dendrimers for corneal, reti- 
nal, and choroidal neovascularization have been pub- 
lished [48-50]. For glaucoma, poly(amidoamine) den- 
drimeric constructs have been constructed to deliver pi- 
locarpine and tropicamide [51]. These dendrimers appear 
to have greater corneal residence time, increased bio- 
availability, and low ocular irritation index in animal 
model. A recent study reported increased uptake of ti- 
molol maleate and brimonidine using poly(amidoamine) 
dendrimer hydrogel as delivery modality in bovine cor- 
neal model [52]. 

2.2. Tissue Protection 

Currently, IOP control drives glaucoma management. 
However, some investigators are evaluating the feasibil- 
ity of neuroprotection as well. Apoptosis of retinal gan- 
glion cells (RGC) has been associated with glaucomatous 
optic neuropathy [53]. Studies using RGC death after 
optic nerve injury in an animal model suggest that neuro- 
trophic factors, e.g. brain-derived growth factors, insu- 
lin-like growth factors, glial-derived neurotrophic factor, 
and ciliary neurotrophic factors (CNTF) may support 
RGC survival [54-56]. Accordingly, the roles of neuro- 
trophic factors in neuroprotection in glaucoma are being 

explored. Lentiviral-mediated transfer of CNTF into 
Schwann cells for optic nerve repair has been found to 
significantly increase RGC survival in animal models 
[57]. Others investigators have used biodegradable PLGA 
polymers to construct nano- and microspheres for CNTF 
encapsulation [58]. These authors report bioactivity in an 
in vitro neural stem cell model and note that the process 
of protein encapsulation with the polymer did not reduce 
its potency. Others incorporate CNTF nanospheres into 
photopolymerizable hydrogel to create a tissue engineer- 
ing scaffold with intrinsic sustained drug delivery capa- 
bility [59]. This scaffold provides an enhanced substra- 
tum for neural tissue repair and regeneration. Recently, 
induction of heat shock protein for neuroprotection using 
superparamagnetic nanoparticles has also been reported 
[60]. In the near future, successful commercial deploy- 
ment of these and other developments will add another 
set of tools in the armamentarium of the glaucoma spe- 
cialist to preserve vision. 

2.3. Modulation of Postsurgical Wound Healing  
in Filtration Surgery 

Successful glaucoma filtering surgery necessitates ade-
quate passage of the aqueous humor from the anterior 
chamber to an extraocular reservoir. Exuberant cicatricial 
changes to the conjunctiva following glaucoma filtration 
procedures present a threat to long-term success [61,62]. 
Antifibrotic agents have been demonstrated to promote 
longer bleb survival but are associated with severe com-
plications such as leakage, infection, hypotony, and en- 
dophthalmitis [63-65]. Currently, antifibrotic agents are 
mostly frequently introduced intraoperatively via a soaked 
sponge. As with drug delivery of intraocular pressure 
lowering medications, nanobiotechnology can be directed 
toward improvement of bleb survival.  

A disc carrying biodegradable poly(lactic acid) mi- 
crospheres loaded with 5-fluorouracil for subconjunctival 
implant has been developed and tested in a rabbit model 
[66]. The authors show that delivery of 5-fluorouracil 
using the carrier resulted in greater decrease in intraocu-
lar pressure, prolonged bleb persistence, and less corneal 
toxicity. Syntheses of various nanoparticulate 5-fluorour- 
acil and mitomycin have also been reported [67-69]. 
However, ophthalmic applications of these nanoparticles 
have yet to be investigated.  

Other investigators target the growth factor mediated 
cellular proliferation. In one study, glucosamine and 
glucosamine 6-sulfate dendrimers were used to target 
fibroblast growth factor-2 mediated endothelial cell pro-
liferation and neoangiogenesis in a rabbit model of scar 
tissue formation after glaucoma filtration surgery [70]. 
The authors report that postoperative day 30 bleb sur-
vival improves from 30% to 80%. Histologic examina-
tion revealed less cicatricial proliferation in the den-
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drimer group. In another approach, biodegradable porous 
PLGA microspheres containing antisense-TGF-β2 oli- 
gonucleotide nanocomplexes have been found to pro- 
mote bleb survival in a rabbit model of filtering surgery 
[71]. The antisense oligonucleotide reduces synthesis of 
the cytokine TGF-β2, which promotes wound healing. In 
this study, the nanocomplexes are encapsulated into po- 
rous microspheres and administered subconjunctivally. 
The authors report increased penetration of the encapsu- 
lated oligonucleotides in conjunctival cells and increased 
time to filtering bleb failure. Steroids may also be pack- 
aged via nanoparticles to modulate postoperative wound 
healing. Dexamethasone entrapped in biodegradable 
poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles has 
been reported [72]. These nanoparticles can find applica- 
tions both in preventing filtering bleb scarring and in the 
investigation of steroid response in glaucoma. 

Viral vectors constitute another form of particulate 
nanoparticles that can be directed toward glaucoma sur- 
gical management. Adenovirus-mediated gene therapy 
has been performed to prevent bleb scarring in a rabbit 
model of glaucoma filtration surgery [73]. The authors 
find that topical, intraoperative application of recombi- 
nant adenovirus containing the human p21 gene demon- 
strates inhibition of wound healing and fibroproliferation 
after filtration surgery, comparable to mitomycin but 
with fewer adverse effects. Similar results are seen with 
an Ad-p27 vector [74]. Interestingly, attempts to use viral 
vectors to blunt steroid response are also underway. 
Novel glucocorticoid-inducible adenovirus vectors have 
been developed to overproduce metalloprotein 1, which 
degrades collagen type I after specific activation by 
dexamethasone [75]. Therefore, patients who presumably 
need long-term steroid treatment may benefit by having 
increased metalloproteinase activity to aid trabecular 
flow while on steroids.  

3. Conclusion 

This brief review highlights the recent advances and ad- 
vantages of nanobiotechnology for improving our under- 
standing of glaucoma and its management. In essence, 
nanobiotechnology offers the potential for more effective 
delivery of pharmaceutical agents that can influence both 
the medical and surgical arms of glaucoma management. 
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