
World Journal of Mechanics, 2018, 8, 417-429 
http://www.scirp.org/journal/wjm 

ISSN Online: 2160-0503 
ISSN Print: 2160-049X 

 

DOI: 10.4236/wjm.2018.810030  Oct. 30, 2018 417 World Journal of Mechanics 
 

 
 
 

Pipe Flow of Suspensions Containing Bubbles 

Katharina Gladbach1, Antonio Delgado1, Cornelia Rauh1,2 

1Institute of Fluid Mechanics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany 
2Institute of Food Technology and Food Chemistry, Technical University Berlin, Berlin, Germany 

 
 
 

Abstract 
The steady laminar pipe flow of a suspension with a gas volume fraction 𝜙𝜙 ≤ 
0.5 and small or intermediate bubble deformations in long, and straight sec-
tions of a circular pipe is calculated. The calculations are based on the consti-
tutive equation that was originally derived for dilute emulsions and further 
developed for concentrated suspensions containing bubbles. In contrast to 
the literature, an analytical procedure is used to determine the solution of a 
pipe flow more accurately. The results are presented and discussed with re-
spect to the Reynolds number Re and capillary number Ca. If Ca < 1 or Ca > 
1, a bubble suspension has a parabolic velocity profile indicating a Newtonian 
rheology. If Ca ≈ 1, two regimes of flow are observed in agreement with the 
literature; that is, an inner plug flow where deformation rates are low and an 
outer flow where deformation rates are high. These results imply that, if Ca < 
1, the Reynolds number Re decreases with increasing gas volume fraction 𝜙𝜙 
and that, if Ca ≥ 1, the opposite effect occurs; that is, the Reynolds number Re 
increases with increasing gas volume fraction. 
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1. Introduction 

Foams become more important in industrial applications, but also in food pro-
duction because of many advantages, including low weight, thermal insulation 
and special texture characteristics. Relevant constitutive equations were devel-
oped by Oldroyd [1] [2] [3] [4] and by Frankel and Acrivos [5] [6]. They studied 
the rheological behavior of dilute emulsions in steady or weakly time-dependent 
flows. The models have also been used to describe the rheological behavior of 
dilute bubble suspensions. Contributions were provided by Llewellin, Mader and 
Wilson [7] [8], by Llewellin and Manga [9] and by Pal [10] [11] among others. 
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For bubble suspensions, where the ratio of the dispersed-phase viscosity to the 
continuous-phase viscosity is essentially zero, the viscosity ratio is simply set 
equal to zero. The constitutive equations derived by Oldroyd [1] [2] [3] and by 
Frankel and Acrivos [5] [6] are only valid for small bubble deformations. Llewel-
lin, Mader, Wilson and Manga [7] [8] [9] and Pal [10] [11], however, also ap-
plied the analytical equations (as approximation) when high capillary numbers 
occur, provided that the bubbles do not rupture. In this case, the rheological eq-
uations do not present analytical equations anymore, but they become empirical 
expressions adapted to the experimental data that were used by the authors 
[7]-[16]. In the following, the constitutive equation derived by Oldroyd [2] for 
dilute emulsions and further developed by Pal [11] for concentrated suspensions 
of bubbles is presented. Subsequently, the analytical procedure to calculate a 
pipe flow of a two-phase system is explained. The results are presented and dis-
cussed with respect to the Reynolds number Re and capillary number Ca. 

2. Model for Suspensions Containing Bubbles 

Oldroyd [1] [2] [3] developed a constitutive equation for a dilute emulsion con-
sisting of two incompressible Newtonian liquids. The model is subject to the re-
strictions that inertia effects and hydrodynamic interactions between drops are 
ignored and drop deformations are very small. Oldroyd obtained a linear rela-
tion between the extra stress tensor S, the deformation velocity tensor E and 
their time derivatives. For bubble suspensions, the constitutive equation be-
comes 

1 0 22 .
t t

λ η λ   + = +   
   

S ES E 
 

                   (1) 

t   denotes the Jaumann time derivative defined by 

D ,
Dt t

= + ⋅ − ⋅
A A A W W A


                     (2) 

where A is an arbitrary tensor of order two, W is the rotation velocity tensor and 
D Dt  is the material time derivative of A. The three constants involved in the 
constitutive Equation (1), the zero-shear viscosity 0η , the relaxation time 1λ  
and retardation time 2λ  of the bubble suspension, are given by 

( )0 c 1 ,η η φ= +                              (3) 
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where cη  is the shear viscosity of the liquid phase, R is the bubble radius, σ  is 
the interface tension between liquid and gas phases and φ  is the gas volume 
fraction. The relaxation time 1λ  and retardation time 2λ  for the system vary 
proportionally with the bubble radius R and inversely proportionally with the 
interface tension σ . In a steady shear flow, the velocity vector is assumed to be 
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( )2 ,0,0xγ=u  , where γ  is the constant shear rate. The Oldroyd model (1) - (5) 
gives expressions for the shear viscosity η  and the normal stress differences 

1N  and 2N  of a bubble suspension in the form 
2
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where 0r 0 cη η η= , 1r 1 cλ λ λ= , and 2r 2 cλ λ λ=  are the relative zero-shear 
viscosity, the reduced relaxation time and reduced retardation time, respectively, 
and c c6 5Rλ η σ=  is the relaxation time of a single bubble. The capillary 
number is defined as Ca cN Rη γ σ=   [11]. 

Pal [11] presented a rheological constitutive equation for concentrated sus-
pensions containing bubbles, based on the Oldroyd model [2]. For a steady shear 
flow, the Equations (6)-(8) remain the same, but new improved expressions for 
the relative zero-shear viscosity, reduced relaxation time and reduced retarda-
tion time are derived using the differential effective medium approach. Accord-
ing to this approach, a concentrated suspension is obtained from an initial con-
tinuous phase by successively adding infinitesimal quantities of bubbles to the 
system until the final volume fraction of bubbles is reached. The increment 
changes in zero-shear viscosity, relaxation time and retardation time are calcu-
lated using the solution of a dilute system by treating the suspension as an 
equivalent effective medium that is homogeneous with respect to the new bub-
bles added. The differential equations derived in this manner are integrated to 
obtain the solutions for a concentrated suspension of bubbles. Following Krieger 
and Dougherty, the incremental increase in φ  is taken to be ( )md 1φ φ φ− , 
where mφ  is an adjustable parameter, the maximum packing volume fraction of 
undeformed bubbles. This expression developed by Krieger and Dougherty takes 
account of the fact that voids between existing bubbles are created when new 
bubbles are dispersed in the suspension. For a random close packing of mono-
disperse spherical bubbles, m 0.637φ =  [11]. 

The maximum packing volume fraction of undeformed bubbles depends on 
the size distribution of initial undeformed bubbles. One way to take account for 
the effect of the bubble size distribution on the rheological properties of bubble 
suspensions is to include the parameter mφ . Hence, the new equations for 0η , 

1λ  and 2λ  [11] are given as 
m

0 c
m
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3. Analytical Method for Calculating Pipe Flows 

The pipe flow represents a fluid flow forced by a pressure difference through a 
pipe line. The most important flow is the steady laminar flow of a Newtonian 
liquid through a straight, circular pipe. The mathematical formulation is done in 
cylindrical coordinates ( ), ,r zϕ . The fully developed flow is characterized by 
the fact that the velocity field consists only of the axial component ( )w r  as a 
function of the radial variable r. Hence, the shear rate d dw rγ =  and the shear 
stress τ  depend only on the radial variable r. The fully developed flow in a 
circular pipe is a balance between pressure forces and viscous forces [17] [18], 
i.e. 

,
2

p r
L

τ
∆

= −                            (12) 

in which p∆  is the pressure difference along the pipe, L is the pipe length and 

cR  is the pipe radius. The constitutive equation prescribes how the shear stress 
is related to the fluid velocity. A viscous fluid sticks at the pipe wall so that 

0w =  at cr R= ± . Hence, a Newtonian fluid with shear viscosity µ  has the 
velocity profile 

( )
2

max
c

1 ,rw r W
R

  
 = −  
   

                    (13) 

with the maximal velocity 2
max c 4W pR Lµ= ∆  in the centerline of the pipe. The 

flow volume rate [17] [18] is given by 
4
cπ

.
8
R pQ
Lµ
∆

=                           (14) 

In the following, the steady laminar flow of a bubbly suspension is calculated 
using the Oldroyd model (1) with the new expressions (9)-(11) and m 0.637φ = . 
Based on the Equation (6), a cubic equation for the material behavior is obtained, 
i.e. 

( ) ( )
( )
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where the shear rate ( )x r  is the function to be determined and : 2C p L= ∆ . 
Transformation gives the normal form of a cubic equation 

3 2 0,x ax bx c+ + + =                         (16) 

with the coefficients 
( ) 1
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By the substitution 3x z a= − , the square term in Equation (16) is eliminat-
ed, and the reduced form of the cubic equation 

3 0z pz q+ + =                        (18) 

is obtained with coefficients 
2

,
3
ap b= −                          (19) 
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The solutions of Equation (18) are calculated by Cardano’s formula [19]. First, 
the substitution z u v= +  is performed. Comparison of the coefficients gives 

3p uv− =  and 3 3q u v− = + . According to Vieta’s theorem, 3u  and 3v  are the 
solutions of the quadratic equation ( )2 3 27 0t qt p+ − = . Hence, the solutions 
of the reduced form of the cubic Equation (18) are obtained in the form 

3 ,
2
qu = − + ∆                             (21) 

3 ,
2
qv = − − ∆                             (22) 

in which ∆  is the discriminant: 
2 3

: .
2 3
q p   ∆ = +   

   
                           (23) 

∆  determines the behavior of the solutions significantly, that is, depending 
on whether ∆  is greater, smaller than or equal to zero, the solutions are calcu-
lated differently. The third roots u and v have to be chosen so that the condition 

3p uv− =  is met. The analytical procedure can be summarized as follows: 

( ) ( )

, if 0
2 ,   if 0
equation 27  or 28 , if 0

u v
z u

+ ∆ >
= ∆ =
 ∆ <

 

The last case 0∆ <  depends on the sign of the solution. The physically cor-
rect solution is given by the fact that the velocity profile is continuously differen-
tiable. 

If 0∆ > , there is one real solution and two conjugated complex solutions. A 
solution can simply be determined by solving the formulas for u and v, and sub-
sequent adding. The other solutions are obtained by multiplying u and v with 
the primitive third unit roots. Therefore, the following formulas for the solutions 
of the reduced cubic Equation (18) are to be specified [19]: 

1 ,z u v= +                           (24) 
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                (25) 
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                (26) 

If 0∆ = , it has to be distinguished which values p and q have, since the mul-
tiplicity of the solution depends on these values. If 0p q= = , then 1,2,3 0z = . If 

0p q≠ ≠ , then ( )1 32u v q= = − . According to the formulas given in the Equa-
tions (24)-(26), there is a simple real solution and a double real solution: 

( )1 3
1 2 4 3z u q q p= = − = and ( )1 3

2,3 2 3 2z u q q p= − = = −  [19]. 
If 0∆ <  (i.e. also 0p < ), the third roots u and v are conjugated complex to 

each other. Since ( )2Reu v u u u+ = + = , three different real solutions are ob-
tained. The third roots are determined using trigonometric functions. They are 
obtained in the form: 

1 3

4 1 27cos arccos ,
3 3 2

qz p
p

    
= − − −            

              (27) 

2,3 3

4 1 27 πcos arccos .
3 3 2 3

qz p
p

    
= − − − − ±            

           (28) 

The solutions of the original Equation (16) are determined by the re-substitution 
3x z a= − . 

The real solution is always selected. Rejecting the complex solutions can al-
ready be realized when determining u and v. Unfortunately, there is no common 
procedure to determine the sign of a real solution in advance. However, note 
that the shear rate ( )x r  decreases or increases from the pipe centerline to the 
pipe wall, that is ( ) 0x r <  for 0r >  and ( ) 0x r >  for 0r < . The discrimi-
nant ∆  is positive in the example calculations with capillary number Ca < 1 
while the discriminant also becomes negative in the example calculations with 
capillary number Ca ≥ 1. Based on the shear rate ( )x r , the velocity profile is 
calculated by the composed trapezoidal rule, which is an integration method 
with accuracy order two [20] [21]. 

4. Discussion of the Results 

As a reference example, the steady laminar pipe flow of a two-phase system con-
sisting of an intermediate viscosity liquid and air bubbles is considered. Small, 
spherical, monodisperse air bubbles are dispersed in the liquid. The liquid is as-
sumed to have a Newtonian rheology and the density and surface tension of wa-
ter, that is 3

c 1000 kg mρ =  and 0.072 N mσ =  at 20˚C. The systems consi-
dered here are representative for food systems in industrial processes. The pres-
sure difference along the pipe is postulated to be constant and moderate. The 
necessary material data and process data are given in Table 1 and Table 2. 

The dimensionless numbers, the Reynolds number Re and capillary number 
Ca [22], to characterize the pipe flow of a suspension of bubbles are defined as 
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Table 1. Material data of the liquid for the two-phase systems at 20˚C. 

Material quantity Value Unity 

Density ρc 1000 kg/m3 

Shear viscosity ηc 1 Pas 

Surface tension σ 0.072 N/m 

 
Table 2. Process data for the two-phase systems at 20˚C. 

Process quantity Value Unity 

Temperature ϑ 20 ˚C 

Pipe length L 1 m 

Pipe radius Rc 0.025 m 

Pressure difference Δp 2500 Pa 

Bubble radius R 0.0001; 0.0005; 0.002 m 

Gas volume fraction 𝜙𝜙 0.15; 0.30; 0.45; 0.50 m3/m3 

Parameter 𝜙𝜙m 0.637 m3/m3 

 

c

Re ,Q
Rν

=                              (29) 

( )c cCa ,
R Rη γ
σ

=


                          (30) 

where Q is the volume flow rate, ( )( )cRν η γ ρ=   is the kinematic viscosity of 
the bubble suspension and ( )cRγ  is the shear rate at the pipe wall. The density 
of the suspension is given by ( ) c g1ρ φ ρ φ ρ= − ⋅ + ⋅  with the air density 

3
g 1.2 kg mρ =  at 20˚C. Llewellin, Mader, Wilson and Manga [7] [8] [9] inves-

tigated already the steady laminar pipe flow of bubbly liquids, based on the 
Frankel and Acrivos model [5] [6]. The results presented in this article are based 
on the modified Oldroyd model [1] [2] [3] [4] [10] [11]. They were determined 
by Cardano’s formula. 

The bubble radius R of initial undeformed monodisperse bubbles is varied, 
and the effect on the rheological behavior of suspensions is studied. In Figures 
1-3, the velocity profiles of the two-phase systems with gas volume fraction 𝜙𝜙 = 
0.15 (red solid line), 𝜙𝜙 = 0.30 (black solid line), 𝜙𝜙 = 0.45 (green solid line), and 𝜙𝜙 
= 0.50 (blue solid line) are shown. Additionally, the velocity profiles of the cor-
responding Newtonian two-phase systems (dashed line) are shown for purposes 
of comparison. The Newtonian systems differ from the non-Newtonian systems 
in that the shear viscosity η is replaced by the constant zero-shear viscosity 0η  
and the volume flow rate Q is calculated according to formula (14). Figure 1 and 
Figure 2 are examples for pipe flows with a small capillary number Ca < 1, whe-
reas Figure 3 is an example for pipe flows with an intermediate capillary number 
Ca ≥ 1. 

At small capillary numbers Ca < 1, suspensions of bubbles in a pipe line show 
a parabolic velocity profile indicating a Newtonian rheology [8]. Suspensions  
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Figure 1. Velocity profiles of two-phase systems with different gas volume frac-
tions 𝜙𝜙. The shear viscosity of the liquid is ηc = 1 Pas, and the bubble radius is R 
= 0.0001 m. The dashed lines show the velocity profiles of the corresponding 
two-phase systems, which have a Newtonian rheology. 

 

 
Figure 2. Velocity profiles of two-phase systems with different gas volume frac-
tions 𝜙𝜙. The shear viscosity of the liquid is ηc = 1 Pas, and the bubble radius is R 
= 0.0005 m. The dashed lines show the velocity profiles of the corresponding 
two-phase systems, which have a Newtonian rheology. 

 

with a low gas volume fraction flow faster along the pipe than suspensions with a 
high gas volume fraction. At intermediate capillary numbers Ca ≥ 1, the suspen-
sions of bubbles deviate strongly from the corresponding Newtonian systems. As 
explained by Llewellin, Mader and Wilson [7] [8] [9], the suspension shows two  
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Figure 3. Velocity profiles of two-phase systems with different gas volume frac-
tions 𝜙𝜙. The shear viscosity of the liquid is ηc = 1 Pas, and the bubble radius is R 
= 0.002 m. The dashed lines show the velocity profiles of the corresponding 
two-phase systems, which have a Newtonian rheology. 

 
regimes of flow, an inner plug flow where deformation rates are low and an out-
er flow where deformation rates are high. In this case, a relatively undeformed 
plug is surrounded by a rapidly deforming outer flow [7] [8] [9]. Suspensions 
with a high gas volume fraction flow now faster along the pipe than suspensions 
with a low gas volume fraction. The reason is that, at intermediate capillary 
numbers Ca ≥ 1, air bubbles are stretched and form free slip surfaces in the outer 
flow. As a result, the shear viscosity η in the suspension is decreased and the 
Reynolds number Re is increased significantly. The effect is more strongly, the 
greater the gas volume fraction 𝜙𝜙 is. If Ca > 1, a suspension of bubbles has again 
a parabolic velocity profile. The Reynolds number Re, however, increases now 
with the gas volume fraction 𝜙𝜙. 

The material behavior is explained by Figure 4. This figure shows the relative 
viscosity crη η η=  predicted from the modified Oldroyd model (1) with the 
new expressions (9)-(11) as a function of the capillary number Ca at the values 
of 𝜙𝜙 given above. As analyzed by Pal [11], the plot exhibits three different re-
gions: constant viscosity region at low values of Ca, decreasing viscosity at in-
termediate values of Ca and constant viscosity region at high values of Ca. The 
relative viscosity ηr is greater than unity at capillary numbers Ca < 1 and is less 
than unity at capillary numbers Ca > 1. With the increase in 𝜙𝜙, the relative vis-
cosity ηr increases at Ca < 1 and decreases at Ca > 1. Llewellin, Mader and Wil-
son [7] [8] [9] explained this viscosity behavior physically: For small capillary 
numbers Ca < 1, bubbles are approximately spherical so that flow lines in the 
suspension are distorted. As a result, the viscosity of the suspension increases.  
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Figure 4. Relative viscosity ηr as a function of the capillary number Ca predicted 
by the modified Oldroyd model (1) with the new expressions (9)-(11). The pre-
dictions are shown for different values of the gas volume fraction 𝜙𝜙. The value 
of 𝜙𝜙m = 0.637 corresponds to a random close packing of uniform spherical bub-
bles [10] [11]. 

 
For intermediate or high capillary numbers Ca ≥ 1, bubbles are stretched so that 
they form free slip surfaces in the suspension, and the viscosity decreases. 

If the capillary number Ca is less than unity, the Reynolds number Re de-
creases with increasing gas volume fraction. If the capillary number Ca is greater 
than unity, the opposite effect occurs, that is, the Reynolds number Re increases 
with the gas volume fraction. In Tables 3-5, the values of relevant material and 
process quantities relating to Figures 1-3 are specified: the capillary number Ca, 
the Reynolds number Re, the shear viscosity ( )( )cRη γ  and shear rate ( )cRγ  
at the pipe wall, the volume flow rate Q as well as the velocity ( )0w  in the pipe 
centerline. Relevant results relating to the rheological behavior of suspensions 
containing bubbles are also summarized in the articles [23] [24], where the 
Frankel and Acrivos model is briefly explained. 

5. Conclusion 

The steady laminar pipe flow of a suspension with a gas volume fraction ≤ 0.5 
and small or intermediate bubble deformations is calculated in long, and straight 
sections of a circular pipe. The calculations are based on the constitutive equa-
tion that was originally derived by Oldroyd for dilute emulsions and further de-
veloped by Pal for concentrated suspensions of bubbles. The pipe flows are cha-
racterized by a Reynolds number and a capillary number defined in this article. 
If the capillary number is less or greater than unity, the suspension of bubbles 
shows a Newtonian rheology. If the capillary is approximately unity, the  
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Table 3. Relevant data relating to Figure 1, R = 0.0001 m. 

Quantity 𝜙𝜙 = 0.15 𝜙𝜙 = 0.30 𝜙𝜙 = 0.45 𝜙𝜙 = 0.50 

Ca 0.0366 0.0290 0.0199 0.0164 

Re 9.2420 4.7698 1.7727 1.0848 

η(γ’(Rc)) [Pas] 1.1853 1.4973 2.1773 2.6540 

γ’(Rc) [s−1] 26.3640 20.8707 14.3524 11.7748 

Q [m3/s] 0.000322132 0.000254937 0.000175271 0.000143782 

w(0) [m/s] 0.3287 0.2601 0.1788 0.1467 

 
Table 4. Relevant data relating to Figure 2, R = 0.0005 m. 

Quantity 𝜙𝜙 = 0.15 𝜙𝜙 = 0.30 𝜙𝜙 = 0.45 𝜙𝜙 = 0.50 

Ca 0.1876 0.1520 0.1069 0.0883 

Re 9.6227 5.1628 1.9898 1.2322 

η(γ’(Rc)) [Pas] 1.1570 1.4275 2.0301 2.4565 

γ’(Rc) [s−1] 27.0099 21.8912 15.3932 12.7212 

Q [m3/s] 0.000327379 0.000263077 0.000183430 0.000151160 

w(0) [m/s] 0.3327 0.2663 0.1850 0.1523 

 
Table 5. Relevant data relating to Figure 3, R = 0.0020 m. 

Quantity 𝜙𝜙 = 0.15 𝜙𝜙 = 0.30 𝜙𝜙 = 0.45 𝜙𝜙 = 0.50 

Ca 0.9641 1.3410 2.8733 4.1791 

Re 15.0029 21.2071 79.0661 160.6685 

η(γ’(Rc)) [Pas] 0.9004 0.6473 0.3021 0.2077 

γ’(Rc) [s−1] 34.7069 48.2766 103.4396 150.4483 

Q [m3/s] 0.000397227 0.000490020 0.001084688 0.001666643 

w(0) [m/s] 0.3878 0.4359 0.8777 1.3766 

 
suspension shows two regimes of flow, an inner plug flow and a rapidly deform-
ing outer flow. These results were already found out by Llewellin, Mader, Wilson 
and Manga, who used the Frankel and Acrivos model. They explained different 
velocity profiles by bubble deformations depending on the capillary number. In 
this article, an analytical method and a physical more sensible model were used 
to determine solutions for pipe flows of suspensions containing bubbles more 
accurately. Furthermore, it can be shown: If the capillary number is less than un-
ity, the Reynolds number decreases with increasing gas volume fraction. If the 
capillary number is equal to or greater than unity, the Reynolds number in-
creases with increasing gas volume fraction. 
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