



Article

# On certain subclasses of p-valent functions with negative coefficients defined by a generalized differential operator

### Bitrus Sambo<sup>1,\*</sup> and Gideon Benjamin Meller<sup>1</sup>

- Department of Mathematics, Gombe State University, P.M.B.127, Gombe, Nigeria.; bitrussambo3@gmail.com(B.S); gmeller050@gmail.com(G.B.M)
- \* Correspondence: bitrussambo3@gmail.com

Received: 01 August 2019; Accepted: 03 September 2019; Published: 28 September 2019.

**Abstract:** In this article, we introduce new subclasses of normalized analytic functions in the unit disk U, defined by a generalized Raducanu-Orhan differential Operator. Various results are driven including coefficient inequalities, growth and distortion theorem, closure property,  $\delta$ -neighborhoods, extreme points, radii of close-to-convexity, starlikeness and convexity for these subclasses.

**Keywords:** Multivalent functions, Raducanu-Orhan differential operator, extreme points, coefficient inequality, closure properties.

MSC: 30C45, 30C50, 30C55.

#### 1. Introduction

 $|\mathbf{L}|$ 

et  ${\cal A}$  denote the class of all functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,\tag{1}$$

which are analytic in the open unit disk  $U = \{z : |z| < 1\}$ .

For a function  $f \in \mathcal{A}$ , Raducanu and Orhan [1] introduced the following operator:

$$D_{\alpha\nu}^{0}f(z) = f(z)$$

$$D_{\alpha\nu}^{1}f(z) = \alpha\nu z^{2}f''(z) + (\alpha - \nu)zf'(z) + (1 - \alpha + \nu)f(z)$$

$$D_{\alpha\nu}^{n}f(z) = D_{\alpha\nu}(D_{\alpha\nu}^{n-1}f(z)), (0 \le \nu \le \alpha \le 1, n \in \mathbb{N}).$$
(2)

If f is given by (1), then from the definition of the operator  $D_{\alpha\nu}^n f$ , the Equation (2) can be rewritten as:

$$D_{\alpha\nu}^{n} f(z) = z + \sum_{k=2}^{\infty} \left[ 1 + (\alpha \nu k + \alpha - \nu)(k-1) \right]^{n} a_{k} z^{k}, \tag{3}$$

where  $(n \in N_0 = N \cup \{0\})$ .

**Remark 1.** 1. When  $\alpha = 1$ ,  $\nu = 0$ , we get the Sălăgean differential operator introduced by Sălăgean in [2]. 2. When  $\nu = 0$ , we obtain differential operator defined by Al-Oboudi in [3].

Let  $A_p$  denote the class of functions of the form

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, \qquad (p = 1, 2, 3, ...)$$
 (4)

which are analytic and p-valent in the open unit disk  $U = \{z : |z| < 1\}$ . We can write the following equalities for the functions  $f \in A_v$ :

$$D_{\alpha\nu}^{0,p}f(z) = f(z)$$

$$D_{\alpha\nu}^{1,p}f(z) = \frac{\alpha\nu}{p}z^2f''(z) + \frac{1}{p}[(1-p)\alpha\nu + \alpha - \nu]zf'(z) + (1-\alpha+\nu)f(z)$$
 (5)

$$D_{\alpha\nu}^{n,p}f(z) = D_{\alpha\nu}(D_{\alpha\nu}^{n-1}f(z)), \qquad (n \in N = 1, 2, 3, ...)$$
(6)

If f is given by Equation (4), then from Equation (5) and Equation (6), we see that

$$D_{\alpha\nu}^{n,p}f(z) = z^p + \sum_{k=\nu+1}^{\infty} \left[ 1 + (\alpha\nu k + \alpha - \nu) \left( \frac{k}{p} - 1 \right) \right]^n a_k z^k, \quad (n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, p \in \mathbb{N} = 1, 2, 3, \ldots).$$
 (7)

1. If  $\nu = 0$ ,  $D_{\alpha\nu}^{n,p} f = D_{\alpha,p}^n f$  defined by Bulut in [4]

- 2. If p = 1,  $D_{\alpha\nu}^{n,p} f = D_{\alpha\nu}^{n} f$  introduced by Raducanu and Orhan in [1] 3. If p = 1,  $\alpha = 1$ ,  $\nu = 0$ ,  $D_{\alpha\nu}^{n,p} f = D^{n} f$  defined by Sălăgean in [2] 4. If p = 1,  $\nu = 0$ ,  $D_{\alpha\nu}^{n,p} f = D_{\alpha}^{n} f$  defined by Al-Oboudi in [3].

Let  $\mathcal{T}_p$  denote the subclass of  $\mathcal{A}_p$  consisting of functions of the form

$$f(z) = z^p - \sum_{k=p+1}^{\infty} a_k z^k, \qquad (a_k \ge 0, p = 1, 2, 3, \dots).$$
 (8)

If f is given by Equation (8), then from Equation (5) and Equation (6), we get

$$D_{\alpha\nu}^{n,p}f(z) = z^p - \sum_{k=p+1}^{\infty} \left[ 1 + (\alpha\nu k + \alpha - \nu) \left(\frac{k}{p} - 1\right) \right]^n a_k z^k, \qquad (n \in \mathbb{N}_0)$$

**Definition 1.** A function  $f \in \mathcal{T}_p$  is in the class,  $S_p^n(\vartheta, \beta, \gamma, \varphi)$  if and only if

$$\left| \frac{(D_{\alpha \nu}^{n,p} f(z))' - pz^{p-1}}{\vartheta(D_{\alpha \nu}^{n,p} f(z))' + (\beta - \gamma)} \right| < \varphi, (z \in U, n \in N_0)$$

$$\tag{10}$$

for  $0 \le \nu \le \alpha \le 1, 0 \le \vartheta < 1, 0 \le \gamma < 1, 0 < \beta \le 1, 0 < \varphi < 1, p \in N, D_{\alpha \nu}^{n,p} f(z)$  as in (9).

In this paper, basic properties of the class  $S_p^n(\vartheta, \beta, \gamma, \varphi)$  are studied such as: coefficient inequalities, growth and distortion theorem, closure property,  $\delta$ -neighborhoods, extreme points, radii of close-to-convexity, starlikeness and convexity for these subclasses.

**Remark 3.** If  $\nu = 0$ ,  $\vartheta = \alpha$ ,  $\varphi = \mu$ , the class  $S_v^n(\vartheta, \beta, \gamma, \varphi)$  reduces to the class  $R_v^n(\alpha, \beta, \gamma, \mu)$  investigated by Bulut [4]

**Definition 2.** A function  $f \in \mathcal{T}_p$  is in the class  $S_p^{n,(\delta_0)}(\vartheta,\beta,\gamma,\varphi)$ , if there exists a function  $g(z) \in S_p^n(\vartheta,\beta,\gamma,\varphi)$ such that

$$\left| \frac{f(z)}{g(z)} - 1 \right| < 1 - \delta_0 ... (z \in U, 0 \le \delta_0 < 1)$$

for  $0 \le \vartheta < 1$ ,  $0 \le \gamma < 1$ ,  $0 < \beta \le 1$ ,  $0 < \varphi < 1$ .

**Definition 3.** For a function  $f \in \mathcal{T}_p$ ,  $\delta \ge 0$ ,  $\delta$ -neighborhood of f is defined as:

$$N_{\delta}^{p}(f,g) = \left\{ g : g = z^{p} - \sum_{k=p+1}^{\infty} b_{k} z^{k} \in \mathcal{T}_{p} \text{ and } \sum_{k=p+1}^{\infty} k |a_{k} - b_{k}| \le \delta \right\}, \tag{11}$$

in particular, for a function  $h \in \mathcal{T}_p$ , given by  $h(z) = z^p \ (p \in N)$ , we immediately have

$$N_{\delta}^{p}(h,g) = \left\{ g : g = z^{p} - \sum_{k=p+1}^{\infty} b_{k} z^{k} \in \mathcal{T}_{p}, \text{and } \sum_{k=p+1}^{\infty} k |b_{k}| \le \delta \right\}.$$
 (12)

The concept of neighborhoods was first introduced by Goodman [5] and generalized by Ruschewey [6] and Altintas [7] (see also [8,9].

## 2. Coefficient inequalities

**Theorem 4.** A function  $f \in \mathcal{T}_p$  is in the class  $S_n^n(\vartheta, \beta, \gamma, \varphi)$  if and only if

$$\sum_{k=n+1}^{\infty} k \left[ 1 + (\alpha \nu k + \alpha - \nu) \left( \frac{k}{p} - 1 \right) \right]^n (1 + \varphi \vartheta) a_k \le \varphi (\vartheta p + \beta - \gamma), \tag{13}$$

for  $0 \le \nu \le \alpha \le 1, 0 \le \vartheta < 1, 0 \le \gamma < 1, 0 < \beta \le 1, 0 < \varphi < 1, n \in N_0$ ,  $p \in N$ . Furthermore, the result is sharp for the function given as

$$f(z) = z^{p} - \frac{\varphi(\vartheta p + \beta - \gamma)}{k \left[1 + (\alpha \nu k + \alpha - \nu) \left(\frac{k}{p} - 1\right)\right]^{n} (1 + \varphi \vartheta)} a_{k}, (k \ge p + 1).$$

**Proof.** Suppose that  $f \in S_p^n(\vartheta, \beta, \gamma, \varphi)$ , then from inequality (10), we have

$$\left| \frac{(D_{\alpha\nu}^{n,p} f(z))' - pz^{p-1}}{\vartheta(D_{\alpha\nu}^{n,p} f(z))' + (\beta - \gamma)} \right| = \left| \frac{pz^{p-1} - \sum_{k=p+1}^{\infty} k \left[ 1 + (\alpha\nu k + \alpha - \nu) \left( \frac{k}{p} - 1 \right) \right]^{n} a_{k} z^{k-1} - pz^{p-1}}{\vartheta(pz^{p-1} - \sum_{k=p+1}^{\infty} k \left[ 1 + (\alpha\nu k + \alpha - \nu) \left( \frac{k}{p} - 1 \right) \right]^{n} a_{k} z^{k-1}) + (\beta - \gamma)} \right| \\
= \left| \frac{\sum_{k=p+1}^{\infty} k \left[ 1 + (\alpha\nu k + \alpha - \nu) \left( \frac{k}{p} - 1 \right) \right]^{n} a_{k} z^{k-1}}{\vartheta(pz^{p-1} - \sum_{k=p+1}^{\infty} k \left[ 1 + (\alpha\nu k + \alpha - \nu) \left( \frac{k}{p} - 1 \right) \right]^{n} a_{k} z^{k-1}) + (\beta - \gamma)} \right| \\
< \varphi_{r}(z \in U, n \in N_{0})$$

it is well known that  $\Re z \leq |z|$ , therefore, we obtain

$$\Re\left\{\frac{\sum_{k=p+1}^{\infty}k\left[1+\left(\alpha\nu k+\alpha-\nu\right)\left(\frac{k}{p}-1\right)\right]^{n}a_{k}z^{k-1}}{\vartheta(pz^{p-1}-\sum_{k=p+1}^{\infty}k\left[1+\left(\alpha\nu k+\alpha-\nu\right)\left(\frac{k}{p}-1\right)\right]^{n}a_{k}z^{k-1})+(\beta-\gamma)}\right\}<\varphi.$$

If we choose *z* real and let  $z \rightarrow 1^-$ , then we get

$$\sum_{K=\nu+1}^{\infty} k \left[ 1 + (\alpha \nu k + \alpha - \nu) \left( \frac{k}{p} - 1 \right) \right]^n a_k \leq \varphi \{ \vartheta(p - \sum_{k=\nu+1}^{\infty} k \left[ 1 + (\alpha \nu k + \alpha - \nu) \left( \frac{k}{p} - 1 \right) \right]^n a_k) + (\beta - \gamma) \}$$

which is precisely the assertion (13).

On contrary, suppose that the inequality (13) hold true and let  $z \in \delta U = \{z \in C : |z| = 1\}$ . Then, from (10), we have

$$\begin{split} &\left|\left(D_{\alpha\nu}^{n,p}f(z)\right)'-pz^{p-1}\right|-\varphi\left|\vartheta\left(D_{\alpha\nu}^{n,p}f(z)\right)'+\left(\beta-\gamma\right)\right| \leq \sum_{k=p+1}^{\infty}k\left[1+\left(\alpha\nu k+\alpha-\nu\right)\left(\frac{k}{p}-1\right)\right]^{n}a_{k}\left|z\right|^{k-1} \\ &-\varphi(\vartheta p+\beta-\gamma)+\varphi\vartheta\sum_{k=p+1}^{\infty}k\left[1+\left(\alpha\nu k+\alpha-\nu\right)\left(\frac{k}{p}-1\right)\right]^{n}a_{k}\left|z\right|^{k-1} \\ &=\sum_{k=p+1}^{\infty}k\left[1+\left(\alpha\nu k+\alpha-\nu\right)\left(\frac{k}{p}-1\right)\right]^{n}a_{k}\left|z\right|^{k-1}\left(1+\varphi\vartheta\right)a_{k}-\varphi(\vartheta p+\beta-\gamma)\leq 0. \end{split}$$

By maximum modulus theorem, we have  $f \in S_p^n(\vartheta, \beta, \gamma, \varphi)$ .

**Corollary 5.** If 
$$f \in S_p^n(\vartheta, \beta, \gamma, \varphi)$$
, then  $a_{p+1} \leq \frac{\varphi(\vartheta p + \beta - \gamma)}{(p+1)\left[1 + (\alpha\nu(p+1) + \alpha - \nu)(\frac{1}{p})\right]^n(1 + \varphi\vartheta)}$ .

#### 3. Growth and distortion theorem

**Theorem 6.** For each  $f(z) \in S_p^n(\vartheta, \beta, \gamma, \varphi)$ , we have

$$|z|^p - \frac{\varphi(\vartheta p + \beta - \gamma)}{\left[1 + (\alpha \nu (p+1) + \alpha - \nu)(\frac{1}{p})\right]^n (1 + \varphi \vartheta)(p+1)} |z|^{p+1} \le |f(z)| \le |z|^p + \frac{\varphi(\vartheta p + \beta - \gamma)}{\left[1 + (\alpha \nu (p+1) + \alpha - \nu)(\frac{1}{p})\right]^n (1 + \varphi \vartheta)(p+1)} |z|^{p+1}.$$

**Proof.** Let  $f(z) \in S_p^n(\vartheta, \beta, \gamma, \varphi), z \in U$ , the bound on f(z) is given by

$$|f(z)| \le |z|^p + |z|^{p+1} \sum_{k=p+1}^{\infty} a_k, z \in U,$$
 (14)

from Theorem 4, we have

$$\sum_{k=p+1}^{\infty} a_k \le \frac{\varphi(\vartheta p + \beta - \gamma)}{(p+1) \left[1 + (\alpha \nu (p+1) + \alpha - \nu)(\frac{1}{p})\right]^n (1 + \varphi \vartheta)},\tag{15}$$

by using (15) in (14), we obtain

$$|f(z)| \le |z|^p + \frac{\varphi(\vartheta p + \beta - \gamma)}{(p+1)\left[1 + (\alpha\nu(p+1) + \alpha - \nu)(\frac{1}{p})\right]^n (1 + \varphi\vartheta)} |z|^{p+1},\tag{16}$$

again using (15), we have

$$|f(z)| \ge |z|^p - \frac{\varphi(\vartheta p + \beta - \gamma)}{(p+1) \left[1 + (\alpha \nu (p+1) + \alpha - \nu)(\frac{1}{p})\right]^n (1 + \varphi \vartheta)} |z|^{p+1}.$$
(17)

Consequently, combining (16) and (17) we obtain the desired result.  $\Box$ 

**Theorem 7.** For each 
$$f(z) \in S_p^n(\vartheta, \beta, \gamma, \varphi)$$
, we have 
$$p |z|^{p-1} - \frac{\varphi(\vartheta p + \beta - \gamma)}{\left[1 + (\alpha \nu (p+1) + \alpha - \nu)(\frac{1}{p})\right]^n (1 + \varphi \vartheta)} |z|^p \leq |f'(z)| \leq p |z|^{p-1} + \frac{\varphi(\vartheta p + \beta - \gamma)}{\left[1 + (\alpha \nu (p+1) + \alpha - \nu)(\frac{1}{p})\right]^n (1 + \varphi \vartheta)} |z|^p.$$

**Proof.** Let  $f(z) \in S_n^n(\vartheta, \beta, \gamma, \varphi), z \in U$ , the bound on the derivative of f(z) is given by

$$|f'(z)| \le p |z|^{p-1} + (p+1) |z|^p \sum_{k=p+1}^{\infty} a_k, z \in U,$$

and, in the same way as above, we get our desired result.  $\Box$ 

#### 4. Closure properties

**Theorem 8.** Let the functions

$$f(z) = z^p - \sum_{k=n+1}^{\infty} a_k z^k, \qquad (a_k \ge 0)$$

$$g(z) = z^p - \sum_{k=v+1}^{\infty} b_k z^k, \qquad (b_k \ge 0),$$

be in the class  $S_p^n(\vartheta, \beta, \gamma, \varphi)$ . Then for  $0 \le \lambda \le 1$ , the function h is defined as

$$h(z) = (1 - \lambda)f(z) + \lambda g(z) = z^p - \sum_{k=p+1}^{\infty} c_k z^k,$$

where  $c_k := (1 - \lambda)a_k + \lambda b_k \ge 0$ , is also in  $S_p^n(\vartheta, \beta, \gamma, \varphi)$ .

**Proof.** Suppose that each of the functions f and g is in the class  $S_p^n(\vartheta, \beta, \gamma, \varphi)$ . Then making use of inequality (13), we have

$$\begin{split} &\sum_{k=p+1}^{\infty} k \left[ 1 + (\alpha \nu k + \alpha - \nu) \left( \frac{k}{p} - 1 \right) \right]^n (1 + \varphi \vartheta) c_k \\ &= (1 - \lambda) \sum_{k=p+1}^{\infty} k \left[ 1 + (\alpha \nu k + \alpha - \nu) \left( \frac{k}{p} - 1 \right) \right]^n (1 + \varphi \vartheta) a_k \\ &+ \lambda \sum_{k=p+1}^{\infty} k \left[ 1 + (\alpha \nu k + \alpha - \nu) \left( \frac{k}{p} - 1 \right) \right]^n (1 + \varphi \vartheta) b_k \\ &\leq (1 - \lambda) \varphi (\vartheta p + \beta - \gamma) + \lambda \varphi (\vartheta p + \beta - \gamma) \\ &= \varphi (\vartheta p + \beta - \gamma), \end{split}$$

which completes the proof.  $\Box$ 

## 5. $\delta$ -Neighborhoods

Theorem 9. If

$$\delta := \frac{\varphi(\vartheta p + \beta - \gamma)}{\left[1 + (\alpha \nu (p+1) + \alpha - \nu)(\frac{1}{p})\right]^n (1 + \varphi \vartheta)},\tag{18}$$

then  $S_p^n(\vartheta, \beta, \gamma, \varphi) \subset N_\delta^p(h, g)$ .

**Proof.** For a function  $f(z) \in S_p^n(\vartheta, \beta, \gamma, \varphi)$  of the form (8), Theorem 4 immediately yields

$$(p+1)\left[1+(\alpha\nu(p+1)+\alpha-\nu)(\frac{1}{p})\right]^n(1+\varphi\vartheta)\sum_{k=n+1}^{\infty}a_k\leq \varphi(\vartheta p+\beta-\gamma),$$

therefore,

$$\sum_{k=p+1}^{\infty} a_k \le \frac{\varphi(\vartheta p + \beta - \gamma)}{(p+1) \left[1 + (\alpha \nu (p+1) + \alpha - \nu)(\frac{1}{p})\right]^n (1 + \varphi \vartheta)}.$$
(19)

On the other hand, we also find from (13) that

$$\sum_{k=p+1}^{\infty} k a_k \le \frac{\varphi(\vartheta p + \beta - \gamma)}{\left[1 + (\alpha \nu (p+1) + \alpha - \nu)(\frac{1}{p})\right]^n (1 + \varphi \vartheta)},\tag{20}$$

that is

$$\sum_{k=p+1}^{\infty} k a_k \le \frac{\varphi(\vartheta p + \beta - \gamma)}{\left[1 + (\alpha \nu (p+1) + \alpha - \nu)(\frac{1}{p})\right]^n (1 + \varphi \vartheta)} := \delta, \tag{21}$$

which completes the proof.  $\Box$ 

**Theorem 10.** *If*  $g(z) \in S_p^n(\vartheta, \beta, \gamma, \varphi)$  *and* 

$$\delta_{0} = 1 - \frac{\delta}{p+1} \frac{(p+1) \left[ 1 + (\alpha \nu (p+1) + \alpha - \nu) (\frac{1}{p}) \right]^{n} (1 + \varphi \theta)}{(p+1) \left[ 1 + (\alpha \nu (p+1) + \alpha - \nu) (\frac{1}{p}) \right]^{n} (1 + \varphi \theta) - \varphi (\vartheta p + \beta - \gamma)},$$
(22)

then  $N_{\delta}^{p}(f,g) \subset S_{p}^{n,(\delta_{0})}(\vartheta,\beta,\gamma,\varphi)$ .

**Proof.** Suppose that  $f \in N^p_{\delta}(f,g)$ , then by Definition 3, we have

$$\sum_{k=p+1}^{\infty} k|a_k - b_k| \le \delta,$$

which readily implies the coefficient inequality given by

$$\sum_{k=p+1}^{\infty} |a_k - b_k| \le \frac{\delta}{p+1} (p \in N).$$

Next, since  $g \in S_p^n(\vartheta, \beta, \gamma, \varphi)$ , we have from inequality (13) that

$$\sum_{k=p+1}^{\infty} b_k \leq \frac{\varphi(\vartheta p + \beta - \gamma)}{(p+1)\left[1 + (\alpha\nu(p+1) + \alpha - \nu)(\frac{1}{p})\right]^n (1 + \varphi\vartheta)},$$

so from the definition of the class, we have

$$\begin{split} \left| \frac{f(z)}{g(z)} - 1 \right| &< \frac{\sum_{k=p+1}^{\infty} |a_k - b_k|}{1 - \sum_{k=p+1}^{\infty} b_k} \\ &\leq \frac{\delta}{p+1} \frac{(p+1) \left[ 1 + (\alpha \nu (p+1) + \alpha - \nu) (\frac{1}{p}) \right]^n (1 + \varphi \vartheta)}{(p+1) \left[ 1 + (\alpha \nu (p+1) + \alpha - \nu) (\frac{1}{p}) \right]^n (1 + \varphi \vartheta) - \varphi (\vartheta p + \beta - \gamma)} \\ &= 1 - \delta \varrho \end{split}$$

provided that  $\delta_0$  is given precisely by (22). Thus, by the definition,  $f \in S_p^{n,\delta_0}(\vartheta,\beta,\gamma,\varphi)$  for  $\delta_0$  given by (22), this completes our proof.  $\Box$ 

#### 6. Extreme points

**Theorem 11.** If  $f_p(z) = z^p$ ,  $f_k(z) = z^p - \frac{\varphi(\vartheta p + \beta - \gamma)}{k\left[1 + (\alpha \nu k + \alpha - \nu)\left(\frac{k}{p} - 1\right)\right]^n(1 + \varphi \vartheta)}z^k(k \ge p + 1)$  then,  $f \in S_p^n(\vartheta, \beta, \gamma, \varphi)$  if and only if it can be expressed in the form  $f(z) = \lambda_p f_p(z) + \sum_{k=p+1}^{\infty} \lambda_k f_k(z)$ , where  $\lambda_k \ge 0$  and  $\lambda_p = 1 - \sum_{k=p+1}^{\infty} \lambda_k$ .

**Proof.** Assume that  $f(z) = \lambda_p f_p(z) + \sum_{k=p+1}^{\infty} \lambda_k f_k(z)$ , then

$$f(z) = \left(1 - \sum_{k=p+1}^{\infty} \lambda_k\right) z^p + \sum_{k=p+1}^{\infty} \lambda_k \left\{ z^p - \frac{\varphi(\vartheta p + \beta - \gamma)}{k \left[1 + (\alpha \nu k + \alpha - \nu) \left(\frac{k}{p} - 1\right)\right]^n (1 + \varphi \vartheta)} z^k \right\}$$

$$= z^p - \sum_{k=p+1}^{\infty} \lambda_k \left\{ \frac{\varphi(\vartheta p + \beta - \gamma)}{k \left[1 + (\alpha \nu k + \alpha - \nu) \left(\frac{k}{p} - 1\right)\right]^n (1 + \varphi \vartheta)} z^k \right\}.$$

Thus,

$$\begin{split} &\sum_{k=p+1}^{\infty} k \left[ 1 + (\alpha \nu k + \alpha - \nu) \left( \frac{k}{p} - 1 \right) \right]^n (1 + \varphi \vartheta) \lambda_k \frac{\varphi(\vartheta p + \beta - \gamma)}{k \left[ 1 + (\alpha \nu k + \alpha - \nu) \left( \frac{k}{p} - 1 \right) \right]^n (1 + \varphi \vartheta)} \\ &= \varphi(\vartheta p + \beta - \gamma) \sum_{k=p+1}^{\infty} \lambda_k = \varphi(\vartheta p + \beta - \gamma) (1 - \lambda_p) \leq \varphi(\vartheta p + \beta - \gamma), \end{split}$$

which shows that f satisfies condition (13) and therefore,  $f \in S_p^n(\vartheta, \beta, \gamma, \varphi)$ . Conversely, suppose that  $f \in S_p^n(\vartheta, \beta, \gamma, \varphi)$ , since

$$a_k \leq \frac{\varphi(\vartheta p + \beta - \gamma)}{k \left[1 + (\alpha \nu k + \alpha - \nu) \left(\frac{k}{p} - 1\right)\right]^n (1 + \varphi \vartheta)}, (k \geq p + 1),$$

we may set

$$\lambda_k = \frac{k \left[ 1 + (\alpha \nu k + \alpha - \nu) \left( \frac{k}{p} - 1 \right) \right]^n (1 + \varphi \vartheta)}{\varphi (\vartheta p + \beta - \gamma)} a_k, \text{ and } \lambda_p = 1 - \sum_{k=n+1}^{\infty} \lambda_k,$$

then we obtain from

$$f(z) = z^{p} - \sum_{k=p+1}^{\infty} a_{k} z^{k}$$

$$= (\lambda_{p} + \sum_{k=p+1}^{\infty} \lambda_{k}) z^{p} - \sum_{k=p+1}^{\infty} \lambda_{k} \frac{\varphi(\vartheta p + \beta - \gamma)}{k \left[1 + (\alpha \nu k + \alpha - \nu) \left(\frac{k}{p} - 1\right)\right]^{n} (1 + \varphi \vartheta)} z^{k}$$

$$= \lambda_{p} z^{p} + \sum_{k=p+1}^{\infty} \lambda_{k} (z^{p} - \frac{\varphi(\vartheta p + \beta - \gamma)}{k \left[1 + (\alpha \nu k + \alpha - \nu) \left(\frac{k}{p} - 1\right)\right]^{n} (1 + \varphi \vartheta)} z^{k})$$

$$= \lambda_{p} z^{p} + \sum_{k=p+1}^{\infty} \lambda_{k} f_{k}(z),$$

which completes the proof.  $\Box$ 

**Corollary 12.** The extreme points of  $S_p^n(\vartheta, \beta, \gamma, \varphi)$  are given by

$$f_p(z) = z^p, f_k(z) = z^p - \frac{\varphi(\vartheta p + \beta - \gamma)}{k \left[1 + (\alpha \nu k + \alpha - \nu) \left(\frac{k}{p} - 1\right)\right]^n (1 + \varphi \vartheta)} z^k (k \ge p + 1)$$

## 7. Radii of close-to-convexity, starlikeness and convexity

A function  $f \in \mathcal{T}_p$  is said to be *p*-valently close-to-convex of order  $\rho$  if it satisfies

$$\Re\left\{f'(z)\right\} > \rho$$

for some  $\rho(0 \le \rho < p)$  and for all  $z \in U$ .

Also, a function  $f \in \mathcal{T}_p$  is said to be p-valently starlike of order  $\rho$  if it satisfies

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > \rho,$$

for some  $\rho(0 \le \rho < p)$  and for all  $z \in U$ .

Further, a function  $f \in \mathcal{T}_p$  is said to be p-valently convex of order  $\rho$  if it satisfies

$$\Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} > \rho,$$

for some  $\rho(0 \le \rho < p)$  and for all  $z \in U$ .

**Theorem 13.** If  $f \in S_p^n(\vartheta, \beta, \gamma, \varphi)$  then f is p-valently close-to-convex of order  $\rho$  in  $|z| < r_1(\vartheta, \beta, \gamma, \varphi, \rho)$ , where

$$r_1(\vartheta,\beta,\gamma,\varphi,\rho) = \inf_k \left\{ \frac{\left[1 + (\alpha \nu k + \alpha - \nu) \left(\frac{k}{p} - 1\right)\right]^n (1 + \varphi \vartheta) a_k(p - \rho)}{\varphi(\vartheta p + \beta - \gamma)} \right\}^{\frac{1}{k - p}} k \ge p + 1.$$

**Proof.** It is sufficient to show that  $\left| \frac{f'(z)}{z^{p-1}} - p \right| . Since <math>\left| \frac{pz^{p-1} - \sum_{k=p+1}^{\infty} ka_K z^{k-1}}{z^{p-1}} - p \right| , which implies that$ 

$$\left|\frac{f'(z)}{z^{p-1}} - p\right| \leq \sum_{k=p+1}^{\infty} k a_k |z|^{k-p}$$

implies

$$\frac{\sum_{k=p+1}^{\infty} k a_k |z|^{k-p}}{p-\rho} < 1,$$
(23)

and by applying the result of Theorem 4, we get

$$\sum_{k=p+1}^{\infty} a_k \leq \frac{\varphi(\vartheta p + \beta - \gamma)}{k \left[1 + (\alpha \nu k + \alpha - \nu) \left(\frac{k}{p} - 1\right)\right]^n (1 + \varphi \vartheta) a_k}.$$

Hence,(23) is true if

$$\frac{k|z|^{k-p}}{p-\rho} \le \frac{k\left[1 + (\alpha\nu k + \alpha - \nu)\left(\frac{k}{p} - 1\right)\right]^n (1 + \varphi\vartheta)}{\varphi(\vartheta p + \beta - \gamma)},\tag{24}$$

solving (24) for z we obtain

$$|z| \leq \left\{ \frac{\left[1 + (\alpha \nu k + \alpha - \nu) \left(\frac{k}{p} - 1\right)\right]^n (1 + \varphi \vartheta)(p - \rho)}{\varphi(\vartheta p + \beta - \gamma)} \right\}^{\frac{1}{k - p}}$$

which completes the proof.  $\Box$ 

**Theorem 14.** If  $f \in S_p^n(\vartheta, \beta, \gamma, \varphi)$  then f is p-valently starlike of order  $\rho$  in  $|z| < r_2(\vartheta, \beta, \gamma, \varphi, \rho)$ , where

$$r_2(\vartheta,\beta,\gamma,\varphi,\rho) = \inf_{k} \left\{ \frac{k \left[ 1 + (\alpha \nu k + \alpha - \nu) \left( \frac{k}{p} - 1 \right) \right]^n (1 + \varphi \vartheta)(p - \rho)}{\varphi(\vartheta p + \beta - \gamma)(k - \rho)} \right\}^{\frac{1}{k - p}} k \ge p + 1.$$

**Proof.** In order to prove, it suffices to show that  $\left|\frac{zf'(z)}{f(z)} - p\right| .$ 

$$\left| \frac{zf'(z)}{f(z)} - p \right| = \left| \frac{zf'(z) - pf(z)}{f(z)} \right|   
= \left| \frac{z(pz^{p-1} - \sum_{k=p+1}^{\infty} ka_k z^{k-1}) - p(z^p - \sum_{k=p+1}^{\infty} a_k z^k)}{z^p - \sum_{k=p+1}^{\infty} a_k z^k} \right|   
= \left| \frac{-\sum_{k=p+1}^{\infty} (k-p)a_k z^{k-p}}{1 - \sum_{k=p+1}^{\infty} a_k z^{k-p}} \right| \le \frac{\sum_{k=p+1}^{\infty} (k-p)a_k |z|^{k-p}}{1 - \sum_{k=p+1}^{\infty} a_k |z|^{k-p}} 
(25)$$

and by using inequality (13), we get

$$\sum_{k=p+1}^{\infty} a_k \leq \frac{\varphi(\vartheta p + \beta - \gamma)}{k \left[1 + (\alpha \nu k + \alpha - \nu) \left(\frac{k}{p} - 1\right)\right]^n (1 + \varphi \vartheta) a_k},$$

so, (25) holds true if

$$\frac{(k-\rho)|z|^{k-\rho}}{p-\rho} \leq \frac{k\left[1+(\alpha\nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)\right]^n(1+\varphi\vartheta)}{\varphi(\vartheta p+\beta-\gamma)},$$

and then f is starlike of order  $\rho$ .  $\square$ 

**Theorem 15.** If  $f \in S_v^n(\vartheta, \beta, \gamma, \varphi)$ , then f is p-valently convex of order  $\rho$  in  $|z| < r_3(\vartheta, \beta, \gamma, \varphi, \rho)$ , where

$$r_3(\vartheta,\beta,\gamma,\varphi,\rho) = \inf_{k} \left\{ \frac{\left[1 + (\alpha \nu k + \alpha - \nu) \left(\frac{k}{p} - 1\right)\right]^n (1 + \varphi \vartheta) p(p - \rho)}{\varphi(\vartheta p + \beta - \gamma)(k - \rho)} \right\}^{\frac{1}{k - p}} k \ge p + 1.$$

**Proof.** To prove this, it suffices to show that  $\left|1 + \frac{zf''(z)}{f'(z)} - p\right| . Since$ 

$$\left| 1 + \frac{zf''(z)}{f'(z)} - p \right| = \left| \frac{f'(z) + zf''(z) - pf'(z)}{f'(z)} \right| 
= \left| \frac{pz^{p-1} - \sum_{k=p+1}^{\infty} ka_k z^{k-1} + z(p(p-1)z^{p-2} - \sum_{k=p+1}^{\infty} k(k-1)a_k z^{k-2}) - p(pz^{p-1} - \sum_{k=p+1}^{\infty} ka_k z^{k-1})}{pz^{p-1} - \sum_{k=p+1}^{\infty} ka_k z^{k-1}} \right|$$
(26)

it implies that

$$\left| 1 + \frac{zf''(z)}{f'(z)} - p \right| = \left| \frac{-\sum_{k=p+1}^{\infty} k(k-p)a_k z^{k-p}}{p - \sum_{k=p+1}^{\infty} ka_k z^{k-p}} \right| \le \frac{\sum_{k=p+1}^{\infty} k(k-p)a_k |z|^{k-p}}{p - \sum_{k=p+1}^{\infty} ka_k |z|^{k-p}}$$

and by applying the result in Theorem 4, we get

$$\sum_{k=p+1}^{\infty} a_k \le \frac{\varphi(\vartheta p + \beta - \gamma)}{k \left[1 + (\alpha \nu k + \alpha - \nu) \left(\frac{k}{p} - 1\right)\right]^n (1 + \varphi \vartheta) a_k}$$

so, (26) holds true if

$$\frac{k(k-\rho)|z|^{k-p}}{p(p-\rho)} \le \frac{k\left[1+(\alpha\nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)\right]^n(1+\varphi\vartheta)}{\varphi(\vartheta p+\beta-\gamma)}$$

and then f is convex of order  $\rho$ .  $\square$ 

**Author Contributions:** All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: "The authors declare no conflict of interest."

#### References

- [1] Raducanu, D., & Orhan, H. (2010). Subclasses of analytic functions defined by a generalized differential operator. *International Journal of Mathematical Analysis*, 4(1), 1-15.
- [2] Salagean, G. S. (1983). Subclasses of univalent functions, Complex analysis-fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372. *Lecture Notes in Math*, 1013.
- [3] Al-Oboudi, F. M. (2004). On univalent functions defined by a generalized Sălăgean. *International Journal of Mathematics and Mathematical Sciences*, 2004(27), 1429-1436.

- [4] Bulut, S. (2010). On a class of analytic and multivalent functions with negative coefficients defined by Al-Oboudi differential operator. *Mathematica*, 115.
- [5] Goodman, A. W. (1957). Univalent functions and non-Analytic curves. *Proceedings of the American Mathematical Society,* 8,598-601.
- [6] Ruscheweyh, S. (1981). Neighborhoods of univalent functions. *Proceedings of the American Mathematical Society, 81*(4), 521-527.
- [7] Altintas, O., Irmak, H., & Srivastava, H. M. (2008). Neighborhoods for certain subclasses of multivalently analytic functions defined by using a differential operator. *Computers & Mathematics with Applications*, 55(3), 331-338.
- [8] Altintas, O., Özkan, Ö., & Srivastava, H. M. (2004). Neighborhoods of a certain family of multivalent functions with negative coefficients. *Computers & Mathematics with Applications*, 47(10-11), 1667-1672.
- [9] Altintas, O., & Owa, S. (1996). Neighborhoods of certain analytic functions with negative coefficients. International Journal of Mathematics and Mathematical Sciences, 19(4), 797-800.



© 2019 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).