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Abstract: In this article, we introduce new subclasses of normalized analytic functions in the unit disk
U, defined by a generalized Raducanu-Orhan differential Operator. Various results are driven including
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1. Introduction

L et A denote the class of all functions of the form

f@) =2+ Y b, M
k=2

which are analytic in the open unit disk U = {z : |z] < 1}.
For a function f € A, Raducanu and Orhan [1] introduced the following operator:

DR, f(z) = f(2)

Dy f(2) = avz2?f"(2) + (a = v)zf'(2) + (1 — a +v)f(2)

D,f(z) = Day(D1 1 f(2),(0<v <a <1,mEN). ()

If f is given by (1), then from the definition of the operator Dy, f, the Equation (2) can be rewritten as:

D}, f(z) =z+ i [1+ (avk +a —v)(k—1)]" a5, ©)]
k=2
where (n € Np = N U {0}).

Remark1. 1. Whenwa = 1,v = 0, we get the Saldgean differential operator introduced by Saldgean in [2].
2. When v = 0, we obtain differential operator defined by Al-Oboudi in [3].

Let Ap denote the class of functions of the form

flz) =27 + i a2, (p=1,2,3,..) (4)
k=p+1
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which are analytic and p-valent in the open unit disk U = {z : |z| < 1}. We can write the following equalities
for the functions f € A :

Dol f(z) = f(2)

Dyl f(z) = %sz”(Z) + ;[(1 —plav+a—v)zf'(z) + (1 - a+v)f(z) ®)
Dyf f(z) = Daw(Dlly ' f(2)), (neN=1,23,.) ©6)

If f is given by Equation (4), then from Equation (5) and Equation (6), we see that

[e) n
Duff(z) =2 + ) 1+(0¢1/k+1x—1/)<;§—1)] az, (meNy=NU{0},peN=1,23,..). (7)
k=p+1

Remark2. 1. Ifv=0,Dyf f= Dg,p f defined by Bulut in [4]
2. Ifp=1, Dyt f = D}, f introduced by Raducanu and Orhan in [1]
3. If p=1,a = 1,v =0, Dy f = D" f defined by Silagean in [2]
4. If p=1,v =0, Dy} f = DI'f defined by Al-Oboudi in [3].
Let 7, denote the subclass of A, consisting of functions of the form
flz)=2" - Y 1z, (i >0,p=1,2,3,..). (8)

k=p+1

If f is given by Equation (8), then from Equation (5) and Equation (6), we get

Dyl f(z) = 2P — i {l + (avk +a —v) (;{) - 1)]nakzk, (n € Np) )

k=p+1

Definition 1. A function f € 7, is in the class, S; (8, B, 7, ¢) if and only if

(Dat/ f(2)) — pz~"
9(Daif f(2)) + (B =)

for0<v<a<1,0<9<10<9<10<B<1,0< ¢ <1,pcN,Dy f(z)asin(9).

< ¢,(zeU,ne Ny) (10)

In this paper, basic properties of the class S;(8,B,v, ¢) are studied such as: coefficient inequalities,
growth and distortion theorem, closure property, J-neighborhoods, extreme points, radii of close-to-convexity,
starlikeness and convexity for these subclasses.

Remark 3. If v = 0, ¥ = a, ¢ = p, the class S}(8, 8,7, ¢) reduces to the class R} (a, 3,7, ) investigated by
Bulut [4]

Definition 2. A function f € 7}, is in the class SZ’(%)(
such that

8, B, 7, ¢), if there exists a function g(z) € S;(8,8,7, ¢)
‘f(z) —1‘ <1—=46p..(z€U,0< 5 <1)
8(z)

for0<8<1,0<7<1,0<B<1,0<¢<1.

Definition 3. For a function f € 7;,, 6 > 0, d-neighborhood of f is defined as:

Nf(f/g)Z{gigZZp— Y bz e Tpand ) k|ﬂk—bk|§(5}, (11)
k=p+1 k=p+1



Open J. Math. Anal. 2019, 3(2), 32-41 34

in particular, for a function i € T, given by h(z) = z¥ (p € N), we immediately have
Ng(h,g): {g:g_zp— Y. bkzkeﬁ,and Y. kbl §(5}. (12)
k=p+1 k=p+1

The concept of neighborhoods was first introduced by Goodman [5] and generalized by Ruschewey [6]
and Altintas [7] (see also [8,9].
2. Coefficient inequalities
Theorem 4. A function f € Ty is in the class S;(9, B, 7y, ¢) if and only if
00 k n
Yk [1 + (avk +a —v) ( - 1>} 1+ e0)ar < e(Op+B—7), (13)
k=p+1 p

foro<v<a<1,0<8<1,0<y<1,0<B<1,0<¢<1ne Ny p € N. Furthermore, the result is sharp
for the function given as

fz) =2 — plp+p=7) ar, (k> p+1).
k[1+ vk +a—v) (E=1)] (1+ p9)

Proof. Suppose that f € S} (9, 8,7, ¢), then from inequality (10), we have

(DI fz) —pzr=t || PP oLk 1+ (avk+a—v) (% lﬂ Lt - !
3Dy f(2)) +(B—") Opzh 1 =L, 0k _1 + (avk +a —v) (% — 1)} ! ;1) + (B—1)
L2k [L4 (k= v) (5 =1)]" g2t
O(pzp 1 =L,k il + (avk +a —v) (% 1)} ") 4+ (B—7)

< ¢,(zeU,ne Ny)
it is well known that Rz < |z|, therefore, we obtain

1)r azk1

~1)] a1 + (- )

Yr- p+1k|:1+(0€1/k+0€—1/)<
O(pzP—1 — X,k {1—1— (avk + o —v) (

‘3\7\“

R

< @

‘S\?T‘

If we choose z real and let z — 17, then we get

[e9)

i k[1+(tka+oc—v) (;—1)}11511( < q){z?(p—kz k[l—i—(zka—l—tx—u) (i{)—l)]nak)—l-(ﬁ—’)/)}

K:P-'rl :p-i,—l

which is precisely the assertion (13).
On contrary, suppose that the inequality (13) hold true and let z € 6U = {z € C : |z| = 1}. Then, from

(10), we have

‘(Dz'ff(z))/ _ pzf’—l‘ —¢ ‘ﬁ(DZ;ff(z))/ + (- 7)‘ < i k {1 + (avk +a —v) (i{) _ 1)]nak \z|k71

k=p+1

> k " .
—pOp+B—7)+ 98 ) k{l%—(avk%—a—v) (—1)} ag |z
k=p+1 P

c N
5 k[l—l—(rka—l—a—v) (p—1)] a2 (1 + 98)a — @(9p+ B—7) < 0.
k=p+1
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By maximum modulus theorem, we have f € S;(8,8,7,¢). O

Corollary 5. If f € S(8, 8,7, @), th < o(Bptp-1) .
orollary 5. If f € S;;(8,B,7, ¢), then a1 < Y] Py —mIYE) rwues

3. Growth and distortion theorem

Theorem 6. For each f(z) € Sp(9, B, 7, ¢), we have
Iz|P — o(Op+p—7) ZPY < |f(2)] < |2)P + o(Op+p—7) |z|P*L.
[1+-(@v(p+1)+a—v)(3)] " (1+98) (p+1) - - [14+-(@v(p+1)+a—v)(3)]" (1+98) (p+1)

Proof. Let f(z) € S;(9,B,7,¢),z € U, thebound on f(z) is given by

f@) <zl + 12" Y azel, (14)
k=p+1
from Theorem 4, we have

e () [T+ @p+ ) +a—n)(3)] (14 99)
by using (15) in (14), we obtain

@) < 2P + olbptp-m) 2P+, (16)
(p+1) [T+ (@(p+ 1) +a—v)(H)] (1+98)

again using (15), we have

@) = el - MRy, )
(p+1) [1+(@(p+ 1) +a—v)(D)] (1+98)

Consequently, combining (16) and (17) we obtain the desired result. [

Theorem 7. For each f(z) € Sp(9, B, 7, ¢), we have
plz|Pt = ¢(Op+p=7) 1z <|f'(z)| < plz|P 7t + @(@p+p=7) Iz|P.

1+ (v (p+1)+a—v) ()] (1+99) [1+ (v (p+1)+a—v) ()] (1+99)

Proof. Let f(z) € S;(9,B,7, ¢),z € U, the bound on the derivative of f(z) is given by

@ <plzlf " +(p+1) 2P L azel,

k=p+1
and, in the same way as above, we get our desired result. [
4. Closure properties
Theorem 8. Let the functions
flz) =2F - Z ayz¥, (ap > 0)
k=p+1
g)=2"— Y b, (bx > 0),

k=p+1
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be in the class S;(9, B, 7y, ¢). Then for 0 < A <1, the function h is defined as
hz) = (1= VfE) +Ag() =2 — Y a,
k=p+1
where ci := (1 — A)ag + Abx > 0, is also in S5 (8, B, 7, ¢).

Proof. Suppose that each of the functions f and g is in the class S (¢, B, 7, ¢). Then making use of inequality
(13), we have

i k{l—i—(ucvk—i—oc—v) (;—l)}n(l—k(pﬁ)ck

k=p+1

=(1-A) i k{l—k(zka—kzx—v) <;—1)]n(1+(p19)ﬂk

k=p+1

+/\k§lk [1+ (avk +a —v) (:; - 1>r (1+ ¢?)by

<(1-MNe@p+B—7)+Arp(Op+B—17)
=o(@p+B—7),

which completes the proof. [

5. 6-Neighborhoods
Theorem 9. If

P ¢(Op+B—7)

i / (18)
[+ (av(p+1) +a—v)(D)] (1+90)
then Sz(l‘/’, B,v, ) C Nf(h,g).
Proof. For a function f(z) € Sj(9,B,7, ¢) of the form (8), Theorem 4 immediately yields
1 n ]
(1) [T+ vlp+ 1) +a=0)()] (1+90) 3 0 < glop+p=1)
k=p+1
therefore,
Z a S (P( p .B r)/) " . . (19)
Bt (p D) 14+ (av(p+ ) +a—v)(h)] 1+ 99)
On the other hand, we also find from (13) that
k=p+1 [1+(av(p+1)+vc—v)(%)} (1+ ¢8)
that is
k=p+1 [1+(o¢v(p+1)+tx—v)(%)} (14 ¢9)

which completes the proof. [
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Theorem 10. If g(z) € S (9, 8,7, ¢) and

. (p+1) [1+ @ (p+ 1) +a—0)(H)]" (1+90)
PAL(p+1) [+ @(p+ ) +a—0) ()] (1+98) — p(8p+ - 7)

50 == 1 ’ (22)
then Nf (f,g) C SZ’(‘S”) (8,B,7, ).
Proof. Suppose that f € N¥(f, g), then by Definition 3, we have
Y. klap = bl <,
k=p+1

which readily implies the coefficient inequality given by

1)
Y. la—b] < —=(peN).
k=p+1 P+1

Next, since g € S5 (9, 8,7, ¢), we have from inequality (13) that

b < e(p+p—17) _ ,
" e [ s s3] 99)

so from the definition of the class, we have

fz) ‘ Lip1 lax — byl
8(z) 1- Zio=p+1 by
5 (p+1) [14+ @(p+1) +a—n)(D)]" 1+ ¢8)
TP ) 1 (i) +a—0)(3)] 1+ 98) - g(8p+ B - 7)
= 110,

provided that ¢ is given precisely by (22). Thus, by the definition, f € SZ"SO (9, B, 7, ¢) for &y given by (22), this
completes our proof. [J

6. Extreme points

= 2P — 2P — eloptpr) Kk > p+1) th sn(8 f and
Theorem 11. If f,(z) = 2, fi(z) = z k[1+(avk+zx—v)(%—1)]"(“@9)2 (k> p+1) then, f € S}(8,B,7, ¢) ifan

only if it can be expressed in the form f(z) = Apfy(z) + Zi":pﬂ Akfi(z), where A > 0and Ap=1 — Z,‘fzpﬂ Ak

Proof. Assume that f(z) = Apfy(z) + Yk p1 M (z), then

S S Y P4 S AP Bp+p—7) n k
/) ( k:%l 2 k:§+1 ah k[1+(m/k+1x—1/) (g—lﬂ (1+q019)z
S ¢(bp+p—7) 4

k=p+1 k{l—i—(tka—i—a—v) (%—1)}71(14-4)19)
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Thus,

(o)

wkra—n( -1\ p(0p+B—7)
k:§+1k ek )<P 1” (1+¢§)Akk{1+(avk+a—v)(;;—1)}”(14-(;)19)

=¢@p+p-7) ), A=o@Bp+p-7)(1-1)<o(bp+p-1)
k=p+1
which shows that f satisfies condition (13) and therefore,f € Sj(¢,B, 7, ¢). Conversely, suppose that f €
Sg (8,B,7, ¢), since

o(bp+p—7)
S ke o (S ) asen

we may set
k[l—l—(zka—i—rx—v) (%—1)r(1+(p19)

)\k = Afe, and A, =1— )\k,
¢(Op+B—7) ’ k:;rl

then we obtain from

flo) = = Y g

k=p+1
= (A, + 3 M)zl — 3 A p(Op+p—7) . k
o M T (ke (5 1) s 90)
= Azl + S Au(zP — p(Bp+p—17) : k
A i ka0 (1) g

[e9)
= /\pzp‘f' Z Afi(2),
k=p+1

which completes the proof. [

Corollary 12. The extreme points of S;(9, B, 7, ¢) are given by

fole) = 2, fule) =27 — pOp+p=1) k> p+1)
k[l—l—(tka—l—tx—v)(%—l)} (1+ ¢9)

7. Radii of close-to-convexity,starlikeness and convexity

A function f € 7T}, is said to be p-valently close-to-convex of order p if it satisfies

R{f'(z)} >p

for some p(0 < p < p) and for all z € U.
Also, a function f € 7, is said to be p-valently starlike of order p if it satisfies

SRR

for some p(0 < p < p) and for all z € U.
Further, a function f € 7}, is said to be p-valently convex of order p if it satisfies

T

for some p(0 < p < p) and for all z € U.
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Theorem 13. If f € Sj(8,B,, ¢) then f is p-valently close-to-convex of order p in |z| < r1(8, B, 7, ¢, p), where

1
k—p

{1 + (avk+a —v) (% - 1)}71 (1+ ¢ ar(p —p)
¢(Op+p—7)

rl(ﬂ,ﬁ,y,go,p):h’}f k>p+1.

’ . 2Py kagzk !
é—(zl)—p’ < p—p. Since |” kop X

Proof. It is sufficient to show that

—p| < p — p, which implies

P zP~1

that
"(z > k-
;(1)—10‘ < ) kalzTP <p—op,
k=p+1
implies
YO kay |z[FP
L ”*;_';' S (23)
and by applying the result of Theorem 4, we get
Y < e(bp+p—7)

k " '
k=p+1 k [1—0— (avk+a —v) (5 - 1)} (14 ¢8)ay
Hence,(23) is true if

Kl ) k[l-i—(tka—i-tx—v) (%_1)}n(1+¢19)
p=p - PBp+p—7)

, (24)

solving (24) for z we obtain

[1+ (avk+a—v) (5—1)]"(1+¢ﬁ)(p—p) e

ol < oBp T )

which completes the proof. [

Theorem 14. If f € S;(9, B, 7, ¢) then f is p-valently starlike of order p in |z| < r2(8, B, 7, ¢, p), where

1
k=p

' k{l—i—(avk—i—a—v)(%—1)};1(14-4)19)(;7—())
r2(9,B, v, ¢, p) = inf oOp+B—1(k—p)

k>p+1.

2f'(2)
e "" <pP-p

Proof. In order to prove, it suffices to show that

zﬁ&)_‘ _ 2@ - pf2)

f F fz)

2(pz ! = T kagz" 1) — p(2 — Ykepi1 az")
zP — Zlio=p+1 akzk

~ER k- pad ) R k- plag el

k— k—
IR 1Yz

<p-—p (25)
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and by using inequality (13), we get

S ¢(Op+pB—7) ,
k:%lak =1 [1+ (avk +a — v) (% _1)]”(1+g019)ak

so, (25) holds true if
k n
(k—p) |z[** - k [1 + (avk +a —v) (? —1)} (14 ¢0)
p-p ¢(@p+p—17)
and then f is starlike of order p. [

7

Theorem 15. If f € Sj(8,B,7, ¢), then f is p-valently convex of order p in |z| < r3(8, B, v, ¢, p), where

1
k=p

1+ (@vk+a—v) (E-1)]" 1+ po)p(p - p)
¢(Op+p—7)k—p)

r3(9, 8,7, ¢,p) = inf k>p+1.

Proof. To prove this, it suffices to show that ’1 + ZJ{,N(S) — p‘ <p-—p.
Since
’1 L@ p‘ _ | &) +2f"(z) = pf'(2)
f'(2) f'(2)

pzl = T ka2 (p(p — )22 - T k(k = Va2 ?) — p(pzl = 2, k)

-1 0 —
pzP = YR kayzk—1

(26)

it implies that

gkl = plag|z|*"

N
p— Ty ka2

f'(z) p— 2,‘;°:p+1 kayzk—r

and by applying the result in Theorem 4, we get

< ¢(Op+B—7)
k> n
k=p+1 k {1 + (avk +a —v) (% - 1)] (1+ @0)ay

so, (26) holds true if
k(k—p) |Z|k—P _ k [1 + (avk +a —v) (% - 1)}11 (1+ ¢9)
plp—p) POp+p—17)
and then f is convex of order p. [
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